泛函微分多项式与同态(全)函数的唯一性

H. Waghamore, Manjunath B. E.
{"title":"泛函微分多项式与同态(全)函数的唯一性","authors":"H. Waghamore, Manjunath B. E.","doi":"10.21608/ejmaa.2024.280883.1168","DOIUrl":null,"url":null,"abstract":". This study explores the uniqueness of entire and meromorphic functions with equal weights l ≥ 0 by investigating the general di  erence-di  erential polynomial Ψ ( z,f ). We have extended the  ndings attributed to [3] and derived a new result. Additionally, we examine the implications when a polynomial of degree n shares a common value with the general di  erence-di  erential polynomial. We have also posed an open problem for future research work.","PeriodicalId":91074,"journal":{"name":"Electronic journal of mathematical analysis and applications","volume":"39 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniqueness of General Difference Differential Polynomials and Meromorphic(Entire) Functions\",\"authors\":\"H. Waghamore, Manjunath B. E.\",\"doi\":\"10.21608/ejmaa.2024.280883.1168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This study explores the uniqueness of entire and meromorphic functions with equal weights l ≥ 0 by investigating the general di  erence-di  erential polynomial Ψ ( z,f ). We have extended the  ndings attributed to [3] and derived a new result. Additionally, we examine the implications when a polynomial of degree n shares a common value with the general di  erence-di  erential polynomial. We have also posed an open problem for future research work.\",\"PeriodicalId\":91074,\"journal\":{\"name\":\"Electronic journal of mathematical analysis and applications\",\"volume\":\"39 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic journal of mathematical analysis and applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/ejmaa.2024.280883.1168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic journal of mathematical analysis and applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/ejmaa.2024.280883.1168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

.本研究通过研究一般 di  erence-di  erential 多项式 Ψ ( z,f ) 来探索等权重 l≥ 0 的全等函数和同态函数的唯一性。我们扩展了归因于 [3] 的  ndings,并得出了一个新结果。此外,我们还研究了当 n 度多项式与一般 di  erence-di  erential 多项式共享一个共同值时的影响。我们还为未来的研究工作提出了一个开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniqueness of General Difference Differential Polynomials and Meromorphic(Entire) Functions
. This study explores the uniqueness of entire and meromorphic functions with equal weights l ≥ 0 by investigating the general di  erence-di  erential polynomial Ψ ( z,f ). We have extended the  ndings attributed to [3] and derived a new result. Additionally, we examine the implications when a polynomial of degree n shares a common value with the general di  erence-di  erential polynomial. We have also posed an open problem for future research work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信