{"title":"新一代 KRAS 抑制剂......sotorasib 和 adagrasib 之后是什么?","authors":"Yuko Oya , Kazuyoshi Imaizumi , Tetsuya Mitsudomi","doi":"10.1016/j.lungcan.2024.107886","DOIUrl":null,"url":null,"abstract":"<div><p>The Kirsten rat sarcoma viral oncogene homolog (<em>KRAS</em>) is one of the first driver oncogenes identified in human cancer in the early 1980s. However, it has been deemed ’undruggable’ for nearly four decades until the discovery of KRAS G12C covalent inhibitors, which marked a pivotal breakthrough. Currently, sotorasib and adagrasib have been approved by the US FDA to treat patients with non-small cell lung cancer (NSCLC) harboring <em>KRAS</em> G12C mutation. However, their efficacy is somewhat limited compared to that of other targeted therapies owing to intrinsic resistance or early acquisition of resistance. While G12C is the predominant subtype of <em>KRAS</em> mutations in NSCLC, G12D/V is prevalent in colorectal and pancreatic cancers. These facts have spurred active research to develop more potent KRAS G12C inhibitors as well as inhibitors targeting non-G12C <em>KRAS</em> mutations. Novel approaches, such as molecular shielding or targeted protein degradation, are also under development. Combining KRAS inhibitors with inhibitors of the receptor-tyrosine kinase-RAS-mitogen-activated protein kinase (MAPK) pathway is underway to counteract redundant feedback mechanisms. Additionally, immunological approaches utilizing T-cell receptor (TCR)-engineered T cell therapy or vaccines, and Hapimmune antibodies are ongoing. This review delineates the recent advancements in KRAS inhibitor development in the post-sotorasib/adagrasib era, with a focus on NSCLC.</p></div>","PeriodicalId":18129,"journal":{"name":"Lung Cancer","volume":"194 ","pages":"Article 107886"},"PeriodicalIF":4.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The next-generation KRAS inhibitors…What comes after sotorasib and adagrasib?\",\"authors\":\"Yuko Oya , Kazuyoshi Imaizumi , Tetsuya Mitsudomi\",\"doi\":\"10.1016/j.lungcan.2024.107886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Kirsten rat sarcoma viral oncogene homolog (<em>KRAS</em>) is one of the first driver oncogenes identified in human cancer in the early 1980s. However, it has been deemed ’undruggable’ for nearly four decades until the discovery of KRAS G12C covalent inhibitors, which marked a pivotal breakthrough. Currently, sotorasib and adagrasib have been approved by the US FDA to treat patients with non-small cell lung cancer (NSCLC) harboring <em>KRAS</em> G12C mutation. However, their efficacy is somewhat limited compared to that of other targeted therapies owing to intrinsic resistance or early acquisition of resistance. While G12C is the predominant subtype of <em>KRAS</em> mutations in NSCLC, G12D/V is prevalent in colorectal and pancreatic cancers. These facts have spurred active research to develop more potent KRAS G12C inhibitors as well as inhibitors targeting non-G12C <em>KRAS</em> mutations. Novel approaches, such as molecular shielding or targeted protein degradation, are also under development. Combining KRAS inhibitors with inhibitors of the receptor-tyrosine kinase-RAS-mitogen-activated protein kinase (MAPK) pathway is underway to counteract redundant feedback mechanisms. Additionally, immunological approaches utilizing T-cell receptor (TCR)-engineered T cell therapy or vaccines, and Hapimmune antibodies are ongoing. This review delineates the recent advancements in KRAS inhibitor development in the post-sotorasib/adagrasib era, with a focus on NSCLC.</p></div>\",\"PeriodicalId\":18129,\"journal\":{\"name\":\"Lung Cancer\",\"volume\":\"194 \",\"pages\":\"Article 107886\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lung Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169500224004203\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lung Cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169500224004203","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
The next-generation KRAS inhibitors…What comes after sotorasib and adagrasib?
The Kirsten rat sarcoma viral oncogene homolog (KRAS) is one of the first driver oncogenes identified in human cancer in the early 1980s. However, it has been deemed ’undruggable’ for nearly four decades until the discovery of KRAS G12C covalent inhibitors, which marked a pivotal breakthrough. Currently, sotorasib and adagrasib have been approved by the US FDA to treat patients with non-small cell lung cancer (NSCLC) harboring KRAS G12C mutation. However, their efficacy is somewhat limited compared to that of other targeted therapies owing to intrinsic resistance or early acquisition of resistance. While G12C is the predominant subtype of KRAS mutations in NSCLC, G12D/V is prevalent in colorectal and pancreatic cancers. These facts have spurred active research to develop more potent KRAS G12C inhibitors as well as inhibitors targeting non-G12C KRAS mutations. Novel approaches, such as molecular shielding or targeted protein degradation, are also under development. Combining KRAS inhibitors with inhibitors of the receptor-tyrosine kinase-RAS-mitogen-activated protein kinase (MAPK) pathway is underway to counteract redundant feedback mechanisms. Additionally, immunological approaches utilizing T-cell receptor (TCR)-engineered T cell therapy or vaccines, and Hapimmune antibodies are ongoing. This review delineates the recent advancements in KRAS inhibitor development in the post-sotorasib/adagrasib era, with a focus on NSCLC.
期刊介绍:
Lung Cancer is an international publication covering the clinical, translational and basic science of malignancies of the lung and chest region.Original research articles, early reports, review articles, editorials and correspondence covering the prevention, epidemiology and etiology, basic biology, pathology, clinical assessment, surgery, chemotherapy, radiotherapy, combined treatment modalities, other treatment modalities and outcomes of lung cancer are welcome.