ReLAP-Net:用于高光谱和多光谱图像融合的基于残差学习和注意力的并行网络

Aditya Agrawal, SourajaKundu, Touseef Ahmad, Manish Bhatt
{"title":"ReLAP-Net:用于高光谱和多光谱图像融合的基于残差学习和注意力的并行网络","authors":"Aditya Agrawal, SourajaKundu, Touseef Ahmad, Manish Bhatt","doi":"10.14358/pers.24-00003r2","DOIUrl":null,"url":null,"abstract":"Remote sensing applications require high-resolution images to obtain precise information about the Earth???s surface. Multispectral images have high spatial resolution but low spectral resolution. Hyperspectral images have high spectral resolution but low spatial resolution. This study\n proposes a residual learning and attention-based parallel network based on residual network and channel attention. The network performs image fusion of a high spatial resolution multispectral image and a low spatial resolution hyperspectral image. The network training and fusion experiments\n are conducted on four public benchmark data sets to show the effectiveness of the proposed model. The fusion performance is compared with classical signal processing???based image fusion techniques. Four image metrics are used for the quantitative evaluation of the fused images. The proposed\n network improved fusion ability by reducing the root mean square error and relative dimensionless global error in synthesis and increased the peak signal-to-noise ratio when compared to other state-of-the-art models.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"71 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ReLAP-Net: Residual Learning and Attention Based Parallel Network for Hyperspectral and Multispectral Image Fusion\",\"authors\":\"Aditya Agrawal, SourajaKundu, Touseef Ahmad, Manish Bhatt\",\"doi\":\"10.14358/pers.24-00003r2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote sensing applications require high-resolution images to obtain precise information about the Earth???s surface. Multispectral images have high spatial resolution but low spectral resolution. Hyperspectral images have high spectral resolution but low spatial resolution. This study\\n proposes a residual learning and attention-based parallel network based on residual network and channel attention. The network performs image fusion of a high spatial resolution multispectral image and a low spatial resolution hyperspectral image. The network training and fusion experiments\\n are conducted on four public benchmark data sets to show the effectiveness of the proposed model. The fusion performance is compared with classical signal processing???based image fusion techniques. Four image metrics are used for the quantitative evaluation of the fused images. The proposed\\n network improved fusion ability by reducing the root mean square error and relative dimensionless global error in synthesis and increased the peak signal-to-noise ratio when compared to other state-of-the-art models.\",\"PeriodicalId\":211256,\"journal\":{\"name\":\"Photogrammetric Engineering & Remote Sensing\",\"volume\":\"71 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering & Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14358/pers.24-00003r2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.24-00003r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

遥感应用需要高分辨率图像来获取有关地球表面的精确信息。多光谱图像具有较高的空间分辨率,但光谱分辨率较低。高光谱图像具有较高的光谱分辨率,但空间分辨率较低。本研究基于残差网络和通道注意力,提出了一种基于残差学习和注意力的并行网络。该网络可对高空间分辨率的多光谱图像和低空间分辨率的高光谱图像进行图像融合。在四个公共基准数据集上进行了网络训练和融合实验,以显示所提模型的有效性。融合性能与基于经典信号处理的图像融合技术进行了比较。融合图像的定量评估采用了四个图像指标。与其他最先进的模型相比,所提出的网络降低了合成中的均方根误差和相对无量纲全局误差,提高了峰值信噪比,从而改善了融合能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ReLAP-Net: Residual Learning and Attention Based Parallel Network for Hyperspectral and Multispectral Image Fusion
Remote sensing applications require high-resolution images to obtain precise information about the Earth???s surface. Multispectral images have high spatial resolution but low spectral resolution. Hyperspectral images have high spectral resolution but low spatial resolution. This study proposes a residual learning and attention-based parallel network based on residual network and channel attention. The network performs image fusion of a high spatial resolution multispectral image and a low spatial resolution hyperspectral image. The network training and fusion experiments are conducted on four public benchmark data sets to show the effectiveness of the proposed model. The fusion performance is compared with classical signal processing???based image fusion techniques. Four image metrics are used for the quantitative evaluation of the fused images. The proposed network improved fusion ability by reducing the root mean square error and relative dimensionless global error in synthesis and increased the peak signal-to-noise ratio when compared to other state-of-the-art models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信