Marcio Augusto Ribeiro-Sanches , Vitor Augusto Lopes Stochi , André Luiz Borges-Machado , Pedro Esteves Duarte Augusto , Tiago Carregari Polachini , Javier Telis-Romero
{"title":"通过碱性过氧化氢处理啤酒糟(BSG)实现其价值:对成分、结构和流变特性的影响","authors":"Marcio Augusto Ribeiro-Sanches , Vitor Augusto Lopes Stochi , André Luiz Borges-Machado , Pedro Esteves Duarte Augusto , Tiago Carregari Polachini , Javier Telis-Romero","doi":"10.1016/j.fbp.2024.07.008","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the impact of alkaline processing with hydrogen peroxide (AHP) on the chemical composition, structure, and rheological properties of brewer's spent grains (BSG). Suspensions with different concentrations of BSG (2–8 %) and AHP (1–8 %) were subjected to different processing times (0–12 h). The BSG chemical composition, morphology, crystallinity, modifications of functional groups, and rheological behavior were evaluated over processing. Increasing the concentration of AHP in the suspension and the processing time improved the removal of proteins, lignin, and extractives from BSG into the suspension and, consequently, increased the cellulose and hemicellulose content in the processed BSG. On the other hand, higher concentrations of BSG in the suspension slightly reduced the removal efficiency of these components. AHP processing also induced thinning of the cell wall and changes in particle shape. These changes together with the increase in crystallinity of the processed BSG indicated the material destructuring. FTIR spectra showed reduced intensity of lignin and protein post-processing, indicating their removal, while peaks related to cellulose and hemicellulose increased in processed BSG. The flow curves of the suspensions were adjusted to the Herschel-Bulkley model, exhibiting non-Newtonian behavior with flow yield stress (1.529 Pa < τ<sub>0</sub> < 4.646 Pa) and pseudoplasticity (0.830 < n < 0.969) in all conditions. Flow resistance increased with increasing concentration of AHP, BSG, and processing time. Notably, the increase in processing time resulted in greater removal of BSG components, especially proteins, lignin, and extractives, which significantly contributed to the increase in both the flow yield stress and the consistency index of the suspensions. All this information is useful and will support the design of equipment and processes, especially those involving the extraction of proteins and the conversion of the BSG lignocellulose fraction into biofuels.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":"147 ","pages":"Pages 239-250"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Valorization of brewer's spent grains (BSG) through alkaline hydrogen peroxide processing: Effect on composition, structure and rheological properties\",\"authors\":\"Marcio Augusto Ribeiro-Sanches , Vitor Augusto Lopes Stochi , André Luiz Borges-Machado , Pedro Esteves Duarte Augusto , Tiago Carregari Polachini , Javier Telis-Romero\",\"doi\":\"10.1016/j.fbp.2024.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigated the impact of alkaline processing with hydrogen peroxide (AHP) on the chemical composition, structure, and rheological properties of brewer's spent grains (BSG). Suspensions with different concentrations of BSG (2–8 %) and AHP (1–8 %) were subjected to different processing times (0–12 h). The BSG chemical composition, morphology, crystallinity, modifications of functional groups, and rheological behavior were evaluated over processing. Increasing the concentration of AHP in the suspension and the processing time improved the removal of proteins, lignin, and extractives from BSG into the suspension and, consequently, increased the cellulose and hemicellulose content in the processed BSG. On the other hand, higher concentrations of BSG in the suspension slightly reduced the removal efficiency of these components. AHP processing also induced thinning of the cell wall and changes in particle shape. These changes together with the increase in crystallinity of the processed BSG indicated the material destructuring. FTIR spectra showed reduced intensity of lignin and protein post-processing, indicating their removal, while peaks related to cellulose and hemicellulose increased in processed BSG. The flow curves of the suspensions were adjusted to the Herschel-Bulkley model, exhibiting non-Newtonian behavior with flow yield stress (1.529 Pa < τ<sub>0</sub> < 4.646 Pa) and pseudoplasticity (0.830 < n < 0.969) in all conditions. Flow resistance increased with increasing concentration of AHP, BSG, and processing time. Notably, the increase in processing time resulted in greater removal of BSG components, especially proteins, lignin, and extractives, which significantly contributed to the increase in both the flow yield stress and the consistency index of the suspensions. All this information is useful and will support the design of equipment and processes, especially those involving the extraction of proteins and the conversion of the BSG lignocellulose fraction into biofuels.</p></div>\",\"PeriodicalId\":12134,\"journal\":{\"name\":\"Food and Bioproducts Processing\",\"volume\":\"147 \",\"pages\":\"Pages 239-250\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Bioproducts Processing\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960308524001329\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioproducts Processing","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960308524001329","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Valorization of brewer's spent grains (BSG) through alkaline hydrogen peroxide processing: Effect on composition, structure and rheological properties
This study investigated the impact of alkaline processing with hydrogen peroxide (AHP) on the chemical composition, structure, and rheological properties of brewer's spent grains (BSG). Suspensions with different concentrations of BSG (2–8 %) and AHP (1–8 %) were subjected to different processing times (0–12 h). The BSG chemical composition, morphology, crystallinity, modifications of functional groups, and rheological behavior were evaluated over processing. Increasing the concentration of AHP in the suspension and the processing time improved the removal of proteins, lignin, and extractives from BSG into the suspension and, consequently, increased the cellulose and hemicellulose content in the processed BSG. On the other hand, higher concentrations of BSG in the suspension slightly reduced the removal efficiency of these components. AHP processing also induced thinning of the cell wall and changes in particle shape. These changes together with the increase in crystallinity of the processed BSG indicated the material destructuring. FTIR spectra showed reduced intensity of lignin and protein post-processing, indicating their removal, while peaks related to cellulose and hemicellulose increased in processed BSG. The flow curves of the suspensions were adjusted to the Herschel-Bulkley model, exhibiting non-Newtonian behavior with flow yield stress (1.529 Pa < τ0 < 4.646 Pa) and pseudoplasticity (0.830 < n < 0.969) in all conditions. Flow resistance increased with increasing concentration of AHP, BSG, and processing time. Notably, the increase in processing time resulted in greater removal of BSG components, especially proteins, lignin, and extractives, which significantly contributed to the increase in both the flow yield stress and the consistency index of the suspensions. All this information is useful and will support the design of equipment and processes, especially those involving the extraction of proteins and the conversion of the BSG lignocellulose fraction into biofuels.
期刊介绍:
Official Journal of the European Federation of Chemical Engineering:
Part C
FBP aims to be the principal international journal for publication of high quality, original papers in the branches of engineering and science dedicated to the safe processing of biological products. It is the only journal to exploit the synergy between biotechnology, bioprocessing and food engineering.
Papers showing how research results can be used in engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in equipment or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of food and bioproducts processing.
The journal has a strong emphasis on the interface between engineering and food or bioproducts. Papers that are not likely to be published are those:
• Primarily concerned with food formulation
• That use experimental design techniques to obtain response surfaces but gain little insight from them
• That are empirical and ignore established mechanistic models, e.g., empirical drying curves
• That are primarily concerned about sensory evaluation and colour
• Concern the extraction, encapsulation and/or antioxidant activity of a specific biological material without providing insight that could be applied to a similar but different material,
• Containing only chemical analyses of biological materials.