Mohd Hafiz Ab Satar, N.A. Razak, Mohd Safie Abdullah, Farzad Ismal
{"title":"全面比较被动流控制对风力涡轮机叶片升力和阻力性能的影响:CFD 方法","authors":"Mohd Hafiz Ab Satar, N.A. Razak, Mohd Safie Abdullah, Farzad Ismal","doi":"10.1016/j.euromechflu.2024.07.009","DOIUrl":null,"url":null,"abstract":"<div><p>Flow control techniques used on wind turbines have been shown to significantly increase energy generation when compared to traditional wind turbines. Although various flow control methods have been introduced in the last two decades, the comparison between these methods is still the least conducted by researchers. Therefore, the present study aims to evaluate the performance of an airfoil utilizing both single and dual passive flow control methods, such as droop, flap, microcylinder, slot, and spoiler with optimal parameters. In this study, a numerical model was developed and applied with the same boundary conditions as those in the experiment. The results of the developed numerical simulation were then validated with experimental and other numerical studies. Mosaic mesh was utilized and the results were compared with conventional mesh types. Even though the mosaic mesh requires a lower number of computational elements, it demonstrated higher computational accuracy when compared to hexcore, polyhedra and tetrahedral type meshes. After obtaining an accurate numerical model, parametric studies were then conducted. The findings mainly highlighted that the airfoil with a microcylinder consistently generated higher performance than droop, flap, spoiler, slot and conventional airfoil. The mean relative improvement was about 2.6%. In an extensive study, eight combinations of flow controls were proposed and evaluated. The highest performances were achieved with the combination of microcylinder and flap, up to 27.9% and the combination of microcylinder and slot, reaching up to 50.2%, for low and high AOAs, respectively.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"108 ","pages":"Pages 119-133"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive comparison of passive flow controls on the wind turbine blade lift and drag performances: A CFD approach\",\"authors\":\"Mohd Hafiz Ab Satar, N.A. Razak, Mohd Safie Abdullah, Farzad Ismal\",\"doi\":\"10.1016/j.euromechflu.2024.07.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Flow control techniques used on wind turbines have been shown to significantly increase energy generation when compared to traditional wind turbines. Although various flow control methods have been introduced in the last two decades, the comparison between these methods is still the least conducted by researchers. Therefore, the present study aims to evaluate the performance of an airfoil utilizing both single and dual passive flow control methods, such as droop, flap, microcylinder, slot, and spoiler with optimal parameters. In this study, a numerical model was developed and applied with the same boundary conditions as those in the experiment. The results of the developed numerical simulation were then validated with experimental and other numerical studies. Mosaic mesh was utilized and the results were compared with conventional mesh types. Even though the mosaic mesh requires a lower number of computational elements, it demonstrated higher computational accuracy when compared to hexcore, polyhedra and tetrahedral type meshes. After obtaining an accurate numerical model, parametric studies were then conducted. The findings mainly highlighted that the airfoil with a microcylinder consistently generated higher performance than droop, flap, spoiler, slot and conventional airfoil. The mean relative improvement was about 2.6%. In an extensive study, eight combinations of flow controls were proposed and evaluated. The highest performances were achieved with the combination of microcylinder and flap, up to 27.9% and the combination of microcylinder and slot, reaching up to 50.2%, for low and high AOAs, respectively.</p></div>\",\"PeriodicalId\":11985,\"journal\":{\"name\":\"European Journal of Mechanics B-fluids\",\"volume\":\"108 \",\"pages\":\"Pages 119-133\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics B-fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997754624000979\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624000979","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
A comprehensive comparison of passive flow controls on the wind turbine blade lift and drag performances: A CFD approach
Flow control techniques used on wind turbines have been shown to significantly increase energy generation when compared to traditional wind turbines. Although various flow control methods have been introduced in the last two decades, the comparison between these methods is still the least conducted by researchers. Therefore, the present study aims to evaluate the performance of an airfoil utilizing both single and dual passive flow control methods, such as droop, flap, microcylinder, slot, and spoiler with optimal parameters. In this study, a numerical model was developed and applied with the same boundary conditions as those in the experiment. The results of the developed numerical simulation were then validated with experimental and other numerical studies. Mosaic mesh was utilized and the results were compared with conventional mesh types. Even though the mosaic mesh requires a lower number of computational elements, it demonstrated higher computational accuracy when compared to hexcore, polyhedra and tetrahedral type meshes. After obtaining an accurate numerical model, parametric studies were then conducted. The findings mainly highlighted that the airfoil with a microcylinder consistently generated higher performance than droop, flap, spoiler, slot and conventional airfoil. The mean relative improvement was about 2.6%. In an extensive study, eight combinations of flow controls were proposed and evaluated. The highest performances were achieved with the combination of microcylinder and flap, up to 27.9% and the combination of microcylinder and slot, reaching up to 50.2%, for low and high AOAs, respectively.
期刊介绍:
The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.