Zhenghui Feng , Hanli Jiang , Ruiqi Lin , Wanying Mu
{"title":"移动窗稀疏偏最小二乘法及其在频谱数据中的应用","authors":"Zhenghui Feng , Hanli Jiang , Ruiqi Lin , Wanying Mu","doi":"10.1016/j.chemolab.2024.105178","DOIUrl":null,"url":null,"abstract":"<div><p>With the advancement of data science and technology, the complexity and diversity of data have increased. Challenges arise when dealing with a larger number of variables than the sample size or the presence of multicollinearity due to strong correlations among variables. In this paper, we propose a moving window sparse partial least squares method that combines the sliding interval technique with sparse partial least squares. By utilizing sliding interval partial least squares regression to identify the optimal interval and incorporating sparse partial least squares for variable selection, the proposed method offers innovations compared to traditional partial least squares (PLS) approaches. Monte Carlo simulations demonstrate its performance in variable selection and model prediction. We apply the method to seawater spectral data, predicting the concentration of chemical Oxygen demand. The results show that the method not only selects reasonable spectral wavelength intervals but also enhances predictive performance.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"252 ","pages":"Article 105178"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moving window sparse partial least squares method and its application in spectral data\",\"authors\":\"Zhenghui Feng , Hanli Jiang , Ruiqi Lin , Wanying Mu\",\"doi\":\"10.1016/j.chemolab.2024.105178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the advancement of data science and technology, the complexity and diversity of data have increased. Challenges arise when dealing with a larger number of variables than the sample size or the presence of multicollinearity due to strong correlations among variables. In this paper, we propose a moving window sparse partial least squares method that combines the sliding interval technique with sparse partial least squares. By utilizing sliding interval partial least squares regression to identify the optimal interval and incorporating sparse partial least squares for variable selection, the proposed method offers innovations compared to traditional partial least squares (PLS) approaches. Monte Carlo simulations demonstrate its performance in variable selection and model prediction. We apply the method to seawater spectral data, predicting the concentration of chemical Oxygen demand. The results show that the method not only selects reasonable spectral wavelength intervals but also enhances predictive performance.</p></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"252 \",\"pages\":\"Article 105178\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743924001187\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924001187","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Moving window sparse partial least squares method and its application in spectral data
With the advancement of data science and technology, the complexity and diversity of data have increased. Challenges arise when dealing with a larger number of variables than the sample size or the presence of multicollinearity due to strong correlations among variables. In this paper, we propose a moving window sparse partial least squares method that combines the sliding interval technique with sparse partial least squares. By utilizing sliding interval partial least squares regression to identify the optimal interval and incorporating sparse partial least squares for variable selection, the proposed method offers innovations compared to traditional partial least squares (PLS) approaches. Monte Carlo simulations demonstrate its performance in variable selection and model prediction. We apply the method to seawater spectral data, predicting the concentration of chemical Oxygen demand. The results show that the method not only selects reasonable spectral wavelength intervals but also enhances predictive performance.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.