{"title":"开发具有蛋白质排斥和抗真菌特性的新型可移动丙烯酸正畸装置材料","authors":"M. Shamaa, S. Ghorab, Nehal F. Albelasy","doi":"10.21608/edj.2024.284316.3018","DOIUrl":null,"url":null,"abstract":"Objective: To develop an innovative self-cure orthodontic acrylic resin containing 2-methacryloyloxyethyl phosphorylcholine (MPC) and explore the impact on protein-repellent capacity, antifungal activity, surface roughness and flexural strength. Materials and Methods: MPC was added to polymethyl Methacrylate PMMA resin in three different concentrations forming four groups (0 [control], 1.5, 3, and 4.5%). The protein adsorption was assessed utilizing a micro bicinchoninic acid method. Candida albicans biofilm activity was estimated via colony forming unit counts. Surface roughness was evaluated utilizing a Mitutoyo surface roughness tester. Flexural strength was tested in three-point flexure utilizing a Universal Testing Machine. Data were statistically analyzed using ANOVA and Tukey HSD tests (α = 0.05). Results: Incorporating MPC into the self-cure orthodontic acrylic resin significantly reduced both protein adsorption and C. albicans CFU compared to control group (p < 0.001). Adding 4.5 wt% MPC to the self-cure orthodontic PMMA resin raised the roughness values significantly (p = 0.012), while adding 1.5% and 3 % MPC resulted in no difference in roughness values to that of the control group (p > 0.05). The incorporation of 3 wt% MPC into PMMA resin significantly increased the flexural strength (P < 0.05). However, PMMA resin incorporating 4.5 wt% MPC revealed significant reduction in flexural strength compared with the control group (p = 0.009). Conclusion: A novel removable acrylic orthodontic appliance material incorporating 3 wt% MPC could achieve a promising protein repellent and antifungal activity without adversely affecting the surface roughness and flexural strength of PMMA resins.","PeriodicalId":11504,"journal":{"name":"Egyptian dental journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Novel Removable Acrylic Orthodontic Appliance Material with Protein - Repellent and Antifungal Properties\",\"authors\":\"M. Shamaa, S. Ghorab, Nehal F. Albelasy\",\"doi\":\"10.21608/edj.2024.284316.3018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: To develop an innovative self-cure orthodontic acrylic resin containing 2-methacryloyloxyethyl phosphorylcholine (MPC) and explore the impact on protein-repellent capacity, antifungal activity, surface roughness and flexural strength. Materials and Methods: MPC was added to polymethyl Methacrylate PMMA resin in three different concentrations forming four groups (0 [control], 1.5, 3, and 4.5%). The protein adsorption was assessed utilizing a micro bicinchoninic acid method. Candida albicans biofilm activity was estimated via colony forming unit counts. Surface roughness was evaluated utilizing a Mitutoyo surface roughness tester. Flexural strength was tested in three-point flexure utilizing a Universal Testing Machine. Data were statistically analyzed using ANOVA and Tukey HSD tests (α = 0.05). Results: Incorporating MPC into the self-cure orthodontic acrylic resin significantly reduced both protein adsorption and C. albicans CFU compared to control group (p < 0.001). Adding 4.5 wt% MPC to the self-cure orthodontic PMMA resin raised the roughness values significantly (p = 0.012), while adding 1.5% and 3 % MPC resulted in no difference in roughness values to that of the control group (p > 0.05). The incorporation of 3 wt% MPC into PMMA resin significantly increased the flexural strength (P < 0.05). However, PMMA resin incorporating 4.5 wt% MPC revealed significant reduction in flexural strength compared with the control group (p = 0.009). Conclusion: A novel removable acrylic orthodontic appliance material incorporating 3 wt% MPC could achieve a promising protein repellent and antifungal activity without adversely affecting the surface roughness and flexural strength of PMMA resins.\",\"PeriodicalId\":11504,\"journal\":{\"name\":\"Egyptian dental journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian dental journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/edj.2024.284316.3018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian dental journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/edj.2024.284316.3018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a Novel Removable Acrylic Orthodontic Appliance Material with Protein - Repellent and Antifungal Properties
Objective: To develop an innovative self-cure orthodontic acrylic resin containing 2-methacryloyloxyethyl phosphorylcholine (MPC) and explore the impact on protein-repellent capacity, antifungal activity, surface roughness and flexural strength. Materials and Methods: MPC was added to polymethyl Methacrylate PMMA resin in three different concentrations forming four groups (0 [control], 1.5, 3, and 4.5%). The protein adsorption was assessed utilizing a micro bicinchoninic acid method. Candida albicans biofilm activity was estimated via colony forming unit counts. Surface roughness was evaluated utilizing a Mitutoyo surface roughness tester. Flexural strength was tested in three-point flexure utilizing a Universal Testing Machine. Data were statistically analyzed using ANOVA and Tukey HSD tests (α = 0.05). Results: Incorporating MPC into the self-cure orthodontic acrylic resin significantly reduced both protein adsorption and C. albicans CFU compared to control group (p < 0.001). Adding 4.5 wt% MPC to the self-cure orthodontic PMMA resin raised the roughness values significantly (p = 0.012), while adding 1.5% and 3 % MPC resulted in no difference in roughness values to that of the control group (p > 0.05). The incorporation of 3 wt% MPC into PMMA resin significantly increased the flexural strength (P < 0.05). However, PMMA resin incorporating 4.5 wt% MPC revealed significant reduction in flexural strength compared with the control group (p = 0.009). Conclusion: A novel removable acrylic orthodontic appliance material incorporating 3 wt% MPC could achieve a promising protein repellent and antifungal activity without adversely affecting the surface roughness and flexural strength of PMMA resins.