Nishu Chowdhury, Jeenat Sultana, Tanim Rahman, Tanjia Chowdhury, F. Khan, Arpita Chakraborty
{"title":"通过集合平均深度学习模型检测马铃薯叶片病害并对病害严重程度进行分类","authors":"Nishu Chowdhury, Jeenat Sultana, Tanim Rahman, Tanjia Chowdhury, F. Khan, Arpita Chakraborty","doi":"10.11591/ijeecs.v35.i1.pp494-502","DOIUrl":null,"url":null,"abstract":"The varying crop species, symptoms of crop diseases, and environmental conditions make early detection of potato leaf disease difficult. Potato leaf diseases are difficult to identify in their early stages because of these reasons. An ensemble model is developed using the ResNet50V2 and DenseNet201 transfer learning algorithms in this study for identifying potato leaf diseases. For this work, 5,702 images were collected from the potato leaf disease dataset and the Plant Village Potato dataset. The datasets include valid, test, and train subdirectories, and the images are taken on 5 epochs. By including three more dense layers in each model and then ensemble that model, the performance of leaf classification may also be improved. Accurately and appropriately, the suggested ensemble averaging model identifies potato leaf phases. So, the accuracy of the suggested ensemble model is achieved with perfect precision. On the second level, the severity of the disorder is assessed using the K mean clustering algorithm. To determine the disease's severity, this system examines each pixel in the early and late blight images. It will be classified as severe if more than 50% of the pixels are damaged.","PeriodicalId":13480,"journal":{"name":"Indonesian Journal of Electrical Engineering and Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potato leaf disease detection through ensemble average deep learning model and classifying the disease severity\",\"authors\":\"Nishu Chowdhury, Jeenat Sultana, Tanim Rahman, Tanjia Chowdhury, F. Khan, Arpita Chakraborty\",\"doi\":\"10.11591/ijeecs.v35.i1.pp494-502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The varying crop species, symptoms of crop diseases, and environmental conditions make early detection of potato leaf disease difficult. Potato leaf diseases are difficult to identify in their early stages because of these reasons. An ensemble model is developed using the ResNet50V2 and DenseNet201 transfer learning algorithms in this study for identifying potato leaf diseases. For this work, 5,702 images were collected from the potato leaf disease dataset and the Plant Village Potato dataset. The datasets include valid, test, and train subdirectories, and the images are taken on 5 epochs. By including three more dense layers in each model and then ensemble that model, the performance of leaf classification may also be improved. Accurately and appropriately, the suggested ensemble averaging model identifies potato leaf phases. So, the accuracy of the suggested ensemble model is achieved with perfect precision. On the second level, the severity of the disorder is assessed using the K mean clustering algorithm. To determine the disease's severity, this system examines each pixel in the early and late blight images. It will be classified as severe if more than 50% of the pixels are damaged.\",\"PeriodicalId\":13480,\"journal\":{\"name\":\"Indonesian Journal of Electrical Engineering and Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Electrical Engineering and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijeecs.v35.i1.pp494-502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijeecs.v35.i1.pp494-502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Potato leaf disease detection through ensemble average deep learning model and classifying the disease severity
The varying crop species, symptoms of crop diseases, and environmental conditions make early detection of potato leaf disease difficult. Potato leaf diseases are difficult to identify in their early stages because of these reasons. An ensemble model is developed using the ResNet50V2 and DenseNet201 transfer learning algorithms in this study for identifying potato leaf diseases. For this work, 5,702 images were collected from the potato leaf disease dataset and the Plant Village Potato dataset. The datasets include valid, test, and train subdirectories, and the images are taken on 5 epochs. By including three more dense layers in each model and then ensemble that model, the performance of leaf classification may also be improved. Accurately and appropriately, the suggested ensemble averaging model identifies potato leaf phases. So, the accuracy of the suggested ensemble model is achieved with perfect precision. On the second level, the severity of the disorder is assessed using the K mean clustering algorithm. To determine the disease's severity, this system examines each pixel in the early and late blight images. It will be classified as severe if more than 50% of the pixels are damaged.
期刊介绍:
The aim of Indonesian Journal of Electrical Engineering and Computer Science (formerly TELKOMNIKA Indonesian Journal of Electrical Engineering) is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of Telecommunication and Information Technology, Applied Computing and Computer, Instrumentation and Control, Electrical (Power), Electronics Engineering and Informatics which covers, but not limited to, the following scope: Signal Processing[...] Electronics[...] Electrical[...] Telecommunication[...] Instrumentation & Control[...] Computing and Informatics[...]