Sungmin Bae, Sungmin Bae, Sung Jin Park, Pomjoo Lee, Chang-Gu Hyun
{"title":"济州传统发酵食品的微生物联合体及其化妆品成分的潜力","authors":"Sungmin Bae, Sungmin Bae, Sung Jin Park, Pomjoo Lee, Chang-Gu Hyun","doi":"10.3390/fermentation10070345","DOIUrl":null,"url":null,"abstract":"In this study, we analyzed the microbial community of traditional fermented foods of Jeju Island to identify the distribution of useful microorganisms and confirm their anti-inflammatory and anti-melanogenic effects to determine their potential use as cosmetic ingredients. Firstly, we examined the microbial communities of Omphalius rusticus Jeotgal (OR), Spratelloides gracilis Jeotgal (SG), Chromis notata Jeotgal (CN), Turbo cornutus Jeotgal (TC), Trichiurus lepturus intestine Jeotgal (TL), Branchiostegus japonicus Sweet Rice Punch (BJ), Salted Anchovy Sauce (SA), Jeju Soy Sauce (JSS), and Jeju Soybean Paste (JSP). We found that Latilactobacillus sakei (87.2%), Tetragenococcus halophilus (37.7%), T. halophilus (96.8%), Bacillus subtilis (23.4%), T. halophilus (71.3%), L. sakei (53.7%), Lentibacillus sp. (42.9%), Enterococcus durans (14.6%), and E. durans (32.8%) were the dominant species. Secondly, to study the nine Jeju fermented foods’ anti-inflammatory and anti-melanogenic effects, we employed RAW 264.7 and B16F10 cells, classic cell models for inflammation and melanogenesis studies. Ethyl acetate extracts of the nine Jeju fermented foods all inhibited nitric oxide (NO) and melanin production in a concentration-dependent manner. Thirdly, to test the applicability of the nine Jeju fermented foods to human skin, we used the MTT assay to assess their cytotoxic effects on human keratinocytes (HaCaT cells). Finally, the topical applicability of the nine Jeju fermented foods was tested through primary skin irritation, and it was found that they did not cause any adverse effects. Therefore, extracts from the nine Jeju fermented foods have potential applications as ingredients in anti-inflammatory and anti-melanogenic products and can be used in the cosmetic industry.","PeriodicalId":507249,"journal":{"name":"Fermentation","volume":"71 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial Consortium of Jeju Traditional Fermented Foods and Their Cosmetic Ingredient Potential\",\"authors\":\"Sungmin Bae, Sungmin Bae, Sung Jin Park, Pomjoo Lee, Chang-Gu Hyun\",\"doi\":\"10.3390/fermentation10070345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we analyzed the microbial community of traditional fermented foods of Jeju Island to identify the distribution of useful microorganisms and confirm their anti-inflammatory and anti-melanogenic effects to determine their potential use as cosmetic ingredients. Firstly, we examined the microbial communities of Omphalius rusticus Jeotgal (OR), Spratelloides gracilis Jeotgal (SG), Chromis notata Jeotgal (CN), Turbo cornutus Jeotgal (TC), Trichiurus lepturus intestine Jeotgal (TL), Branchiostegus japonicus Sweet Rice Punch (BJ), Salted Anchovy Sauce (SA), Jeju Soy Sauce (JSS), and Jeju Soybean Paste (JSP). We found that Latilactobacillus sakei (87.2%), Tetragenococcus halophilus (37.7%), T. halophilus (96.8%), Bacillus subtilis (23.4%), T. halophilus (71.3%), L. sakei (53.7%), Lentibacillus sp. (42.9%), Enterococcus durans (14.6%), and E. durans (32.8%) were the dominant species. Secondly, to study the nine Jeju fermented foods’ anti-inflammatory and anti-melanogenic effects, we employed RAW 264.7 and B16F10 cells, classic cell models for inflammation and melanogenesis studies. Ethyl acetate extracts of the nine Jeju fermented foods all inhibited nitric oxide (NO) and melanin production in a concentration-dependent manner. Thirdly, to test the applicability of the nine Jeju fermented foods to human skin, we used the MTT assay to assess their cytotoxic effects on human keratinocytes (HaCaT cells). Finally, the topical applicability of the nine Jeju fermented foods was tested through primary skin irritation, and it was found that they did not cause any adverse effects. Therefore, extracts from the nine Jeju fermented foods have potential applications as ingredients in anti-inflammatory and anti-melanogenic products and can be used in the cosmetic industry.\",\"PeriodicalId\":507249,\"journal\":{\"name\":\"Fermentation\",\"volume\":\"71 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fermentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fermentation10070345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fermentation10070345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microbial Consortium of Jeju Traditional Fermented Foods and Their Cosmetic Ingredient Potential
In this study, we analyzed the microbial community of traditional fermented foods of Jeju Island to identify the distribution of useful microorganisms and confirm their anti-inflammatory and anti-melanogenic effects to determine their potential use as cosmetic ingredients. Firstly, we examined the microbial communities of Omphalius rusticus Jeotgal (OR), Spratelloides gracilis Jeotgal (SG), Chromis notata Jeotgal (CN), Turbo cornutus Jeotgal (TC), Trichiurus lepturus intestine Jeotgal (TL), Branchiostegus japonicus Sweet Rice Punch (BJ), Salted Anchovy Sauce (SA), Jeju Soy Sauce (JSS), and Jeju Soybean Paste (JSP). We found that Latilactobacillus sakei (87.2%), Tetragenococcus halophilus (37.7%), T. halophilus (96.8%), Bacillus subtilis (23.4%), T. halophilus (71.3%), L. sakei (53.7%), Lentibacillus sp. (42.9%), Enterococcus durans (14.6%), and E. durans (32.8%) were the dominant species. Secondly, to study the nine Jeju fermented foods’ anti-inflammatory and anti-melanogenic effects, we employed RAW 264.7 and B16F10 cells, classic cell models for inflammation and melanogenesis studies. Ethyl acetate extracts of the nine Jeju fermented foods all inhibited nitric oxide (NO) and melanin production in a concentration-dependent manner. Thirdly, to test the applicability of the nine Jeju fermented foods to human skin, we used the MTT assay to assess their cytotoxic effects on human keratinocytes (HaCaT cells). Finally, the topical applicability of the nine Jeju fermented foods was tested through primary skin irritation, and it was found that they did not cause any adverse effects. Therefore, extracts from the nine Jeju fermented foods have potential applications as ingredients in anti-inflammatory and anti-melanogenic products and can be used in the cosmetic industry.