{"title":"利用混合机器学习技术设计和开发基于人口统计的高效电影推荐系统","authors":"Vishal Paranjape, Neelu Nihalani, Nishchol Mishra","doi":"10.15837/ijccc.2024.4.5840","DOIUrl":null,"url":null,"abstract":"Movie Recommender systems are frequently used in academics and industry to give users with relevant, engaging material based on their rating history. However, most traditional methods suffer from the cold-start problem, which is the initial lack of item ratings and data sparsity. The Hybrid Machine Learning (ML) technique is proposed for a movie recommendation system. Demographic data is collected from the Movie Lens dataset, and attributes are evaluated using the Attribute Analysis module. The Aquila Optimization Algorithm is used to select the best attributes, while Random Forest classifier is used for classification. Data is clustered using Fuzzy Probabilistic Cmeans Clustering Algorithm (FPCCA), and the Correspondence Index Assessment Phase (CIAP) uses Bhattacharyya Coefficient in Collaborative Filtering (BCCF) for similarity index calculation. The Outcomes gives the proposed method obtained low error, such as MAE has 0.44, RMSE has 0.63 compared with the baseline methods.","PeriodicalId":179619,"journal":{"name":"Int. J. Comput. Commun. Control","volume":"28 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Development of an Efficient Demographic-based Movie Recommender System using Hybrid Machine Learning Techniques\",\"authors\":\"Vishal Paranjape, Neelu Nihalani, Nishchol Mishra\",\"doi\":\"10.15837/ijccc.2024.4.5840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Movie Recommender systems are frequently used in academics and industry to give users with relevant, engaging material based on their rating history. However, most traditional methods suffer from the cold-start problem, which is the initial lack of item ratings and data sparsity. The Hybrid Machine Learning (ML) technique is proposed for a movie recommendation system. Demographic data is collected from the Movie Lens dataset, and attributes are evaluated using the Attribute Analysis module. The Aquila Optimization Algorithm is used to select the best attributes, while Random Forest classifier is used for classification. Data is clustered using Fuzzy Probabilistic Cmeans Clustering Algorithm (FPCCA), and the Correspondence Index Assessment Phase (CIAP) uses Bhattacharyya Coefficient in Collaborative Filtering (BCCF) for similarity index calculation. The Outcomes gives the proposed method obtained low error, such as MAE has 0.44, RMSE has 0.63 compared with the baseline methods.\",\"PeriodicalId\":179619,\"journal\":{\"name\":\"Int. J. Comput. Commun. Control\",\"volume\":\"28 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Commun. Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15837/ijccc.2024.4.5840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Commun. Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15837/ijccc.2024.4.5840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
电影推荐系统经常被用于学术界和工业界,根据用户的评分记录为其提供相关的、吸引人的资料。然而,大多数传统方法都存在冷启动问题,即最初缺乏项目评级和数据稀疏。本文针对电影推荐系统提出了混合机器学习(ML)技术。从电影镜头数据集中收集人口统计学数据,并使用属性分析模块对属性进行评估。Aquila 优化算法用于选择最佳属性,而随机森林分类器则用于分类。数据使用模糊概率均值聚类算法(FPCCA)进行聚类,对应指数评估阶段(CIAP)使用巴塔查里亚协同过滤系数(BCCF)计算相似性指数。结果表明,与基线方法相比,拟议方法的误差较小,如 MAE 为 0.44,RMSE 为 0.63。
Design and Development of an Efficient Demographic-based Movie Recommender System using Hybrid Machine Learning Techniques
Movie Recommender systems are frequently used in academics and industry to give users with relevant, engaging material based on their rating history. However, most traditional methods suffer from the cold-start problem, which is the initial lack of item ratings and data sparsity. The Hybrid Machine Learning (ML) technique is proposed for a movie recommendation system. Demographic data is collected from the Movie Lens dataset, and attributes are evaluated using the Attribute Analysis module. The Aquila Optimization Algorithm is used to select the best attributes, while Random Forest classifier is used for classification. Data is clustered using Fuzzy Probabilistic Cmeans Clustering Algorithm (FPCCA), and the Correspondence Index Assessment Phase (CIAP) uses Bhattacharyya Coefficient in Collaborative Filtering (BCCF) for similarity index calculation. The Outcomes gives the proposed method obtained low error, such as MAE has 0.44, RMSE has 0.63 compared with the baseline methods.