Andreas Dieing, Hans-Christian Reuss, Marco Schlüter
{"title":"基于实际测量数据的真实转向手感中心转向模型","authors":"Andreas Dieing, Hans-Christian Reuss, Marco Schlüter","doi":"10.4271/2024-01-2994","DOIUrl":null,"url":null,"abstract":"Driving simulators allow the testing of driving functions, vehicle models and acceptance assessment at an early stage. For a real driving experience, it's necessary that all immersions are depicted as realistically as possible. When driving manually, the perceived haptic steering wheel torque plays a key role in conveying a realistic steering feel. To ensure this, complex multi-body systems are used with numerous of parameters that are difficult to identify. Therefore, this study shows a method how to generate a realistic steering feel with a nonlinear open-loop model which only contains significant parameters, particularly the friction of the steering gear. This is suitable for the steering feel in the most driving on-center area. Measurements from test benches and real test drives with an Electric Power Steering (EPS) were used for the Identification and Validation of the model. The open-loop architecture on steering rack level shows adequate results and generate a nearly delay-free response of the expected steering torque. Further it allows the expansion to a closed-loop or a hybrid model with neural networks. This makes it particularly suitable for force feedback systems in driving simulators or Steer-By-Wire Systems.","PeriodicalId":510086,"journal":{"name":"SAE Technical Paper Series","volume":"24 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-Center Steering Model for Realistic Steering Feel based on Real Measurement Data\",\"authors\":\"Andreas Dieing, Hans-Christian Reuss, Marco Schlüter\",\"doi\":\"10.4271/2024-01-2994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driving simulators allow the testing of driving functions, vehicle models and acceptance assessment at an early stage. For a real driving experience, it's necessary that all immersions are depicted as realistically as possible. When driving manually, the perceived haptic steering wheel torque plays a key role in conveying a realistic steering feel. To ensure this, complex multi-body systems are used with numerous of parameters that are difficult to identify. Therefore, this study shows a method how to generate a realistic steering feel with a nonlinear open-loop model which only contains significant parameters, particularly the friction of the steering gear. This is suitable for the steering feel in the most driving on-center area. Measurements from test benches and real test drives with an Electric Power Steering (EPS) were used for the Identification and Validation of the model. The open-loop architecture on steering rack level shows adequate results and generate a nearly delay-free response of the expected steering torque. Further it allows the expansion to a closed-loop or a hybrid model with neural networks. This makes it particularly suitable for force feedback systems in driving simulators or Steer-By-Wire Systems.\",\"PeriodicalId\":510086,\"journal\":{\"name\":\"SAE Technical Paper Series\",\"volume\":\"24 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAE Technical Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4271/2024-01-2994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE Technical Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/2024-01-2994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On-Center Steering Model for Realistic Steering Feel based on Real Measurement Data
Driving simulators allow the testing of driving functions, vehicle models and acceptance assessment at an early stage. For a real driving experience, it's necessary that all immersions are depicted as realistically as possible. When driving manually, the perceived haptic steering wheel torque plays a key role in conveying a realistic steering feel. To ensure this, complex multi-body systems are used with numerous of parameters that are difficult to identify. Therefore, this study shows a method how to generate a realistic steering feel with a nonlinear open-loop model which only contains significant parameters, particularly the friction of the steering gear. This is suitable for the steering feel in the most driving on-center area. Measurements from test benches and real test drives with an Electric Power Steering (EPS) were used for the Identification and Validation of the model. The open-loop architecture on steering rack level shows adequate results and generate a nearly delay-free response of the expected steering torque. Further it allows the expansion to a closed-loop or a hybrid model with neural networks. This makes it particularly suitable for force feedback systems in driving simulators or Steer-By-Wire Systems.