{"title":"基于深度学习的多保真度代用模型用于高维可靠性预测","authors":"Luojie Shi, Baisong Pan, Weile Chen, Zequn Wang","doi":"10.1115/1.4065846","DOIUrl":null,"url":null,"abstract":"\n Multi-fidelity surrogate modeling offers a cost-effective approach to reduce extensive evaluations of expensive physics-based simulations for reliability predictions. However, considering spatial uncertainties in multi-fidelity surrogate modeling remains extremely challenging due to the curse of dimensionality. To address this challenge, this paper introduces a deep learning-based multi-fidelity surrogate modeling approach that fuses multi-fidelity datasets for high-dimensional reliability analysis of complex structures. It first involves a heterogeneous dimension transformation approach to bridge the gap in terms of input format between the low-fidelity and high-fidelity domains. Then, an explainable deep convolutional dimension-reduction network is proposed to effectively reduce the dimensionality of the structural reliability problems. To obtain a meaningful low dimensional space, a new knowledge reasoning-based loss regularization mechanism is integrated with the covariance matrix adaptation evolution strategy to encourage an unbiased linear pattern in the latent space for reliability predictions. Then, the high-fidelity data can be utilized for bias modeling using Gaussian process regression. Finally, Monte Carlo simulation is employed for the propagation of high-dimensional spatial uncertainties. Two structural examples are utilized to validate the effectiveness of the proposed method.","PeriodicalId":504755,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Multi-Fidelity Surrogate Modeling for High Dimensional Reliability Prediction\",\"authors\":\"Luojie Shi, Baisong Pan, Weile Chen, Zequn Wang\",\"doi\":\"10.1115/1.4065846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Multi-fidelity surrogate modeling offers a cost-effective approach to reduce extensive evaluations of expensive physics-based simulations for reliability predictions. However, considering spatial uncertainties in multi-fidelity surrogate modeling remains extremely challenging due to the curse of dimensionality. To address this challenge, this paper introduces a deep learning-based multi-fidelity surrogate modeling approach that fuses multi-fidelity datasets for high-dimensional reliability analysis of complex structures. It first involves a heterogeneous dimension transformation approach to bridge the gap in terms of input format between the low-fidelity and high-fidelity domains. Then, an explainable deep convolutional dimension-reduction network is proposed to effectively reduce the dimensionality of the structural reliability problems. To obtain a meaningful low dimensional space, a new knowledge reasoning-based loss regularization mechanism is integrated with the covariance matrix adaptation evolution strategy to encourage an unbiased linear pattern in the latent space for reliability predictions. Then, the high-fidelity data can be utilized for bias modeling using Gaussian process regression. Finally, Monte Carlo simulation is employed for the propagation of high-dimensional spatial uncertainties. Two structural examples are utilized to validate the effectiveness of the proposed method.\",\"PeriodicalId\":504755,\"journal\":{\"name\":\"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Learning-Based Multi-Fidelity Surrogate Modeling for High Dimensional Reliability Prediction
Multi-fidelity surrogate modeling offers a cost-effective approach to reduce extensive evaluations of expensive physics-based simulations for reliability predictions. However, considering spatial uncertainties in multi-fidelity surrogate modeling remains extremely challenging due to the curse of dimensionality. To address this challenge, this paper introduces a deep learning-based multi-fidelity surrogate modeling approach that fuses multi-fidelity datasets for high-dimensional reliability analysis of complex structures. It first involves a heterogeneous dimension transformation approach to bridge the gap in terms of input format between the low-fidelity and high-fidelity domains. Then, an explainable deep convolutional dimension-reduction network is proposed to effectively reduce the dimensionality of the structural reliability problems. To obtain a meaningful low dimensional space, a new knowledge reasoning-based loss regularization mechanism is integrated with the covariance matrix adaptation evolution strategy to encourage an unbiased linear pattern in the latent space for reliability predictions. Then, the high-fidelity data can be utilized for bias modeling using Gaussian process regression. Finally, Monte Carlo simulation is employed for the propagation of high-dimensional spatial uncertainties. Two structural examples are utilized to validate the effectiveness of the proposed method.