人工神经网络学习、注意力和记忆力

Information Pub Date : 2024-07-02 DOI:10.3390/info15070387
Vincenzo Manca
{"title":"人工神经网络学习、注意力和记忆力","authors":"Vincenzo Manca","doi":"10.3390/info15070387","DOIUrl":null,"url":null,"abstract":"The learning equations of an ANN are presented, giving an extremely concise derivation based on the principle of backpropagation through the descendent gradient. Then, a dual network is outlined acting between synapses of a basic ANN, which controls the learning process and coordinates the subnetworks selected by attention mechanisms toward purposeful behaviors. Mechanisms of memory and their affinity with comprehension are considered, by emphasizing the common role of abstraction and the interplay between assimilation and accommodation, in the spirit of Piaget’s analysis of psychological acquisition and genetic epistemology. Learning, comprehension, and knowledge are expressed as different levels of organization of informational processes inside cognitive systems. It is argued that formal analyses of cognitive artificial systems could shed new light on typical mechanisms of “natural intelligence” and, in a specular way, that models of natural cognition processes could promote further developments of ANN models. Finally, new possibilities of chatbot interaction are briefly discussed.","PeriodicalId":510156,"journal":{"name":"Information","volume":"5 5‐6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Neural Network Learning, Attention, and Memory\",\"authors\":\"Vincenzo Manca\",\"doi\":\"10.3390/info15070387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The learning equations of an ANN are presented, giving an extremely concise derivation based on the principle of backpropagation through the descendent gradient. Then, a dual network is outlined acting between synapses of a basic ANN, which controls the learning process and coordinates the subnetworks selected by attention mechanisms toward purposeful behaviors. Mechanisms of memory and their affinity with comprehension are considered, by emphasizing the common role of abstraction and the interplay between assimilation and accommodation, in the spirit of Piaget’s analysis of psychological acquisition and genetic epistemology. Learning, comprehension, and knowledge are expressed as different levels of organization of informational processes inside cognitive systems. It is argued that formal analyses of cognitive artificial systems could shed new light on typical mechanisms of “natural intelligence” and, in a specular way, that models of natural cognition processes could promote further developments of ANN models. Finally, new possibilities of chatbot interaction are briefly discussed.\",\"PeriodicalId\":510156,\"journal\":{\"name\":\"Information\",\"volume\":\"5 5‐6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/info15070387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info15070387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了智能网络的学习方程,并根据梯度下降的反向传播原理进行了极为简洁的推导。然后,概述了在基本 ANN 的突触之间起作用的双重网络,该网络控制学习过程,并协调由注意机制选择的子网络,以实现有目的的行为。通过强调抽象的共同作用以及同化与调适之间的相互作用,并借鉴皮亚杰对心理习得和遗传认识论的分析精神,研究了记忆的机制及其与理解的关系。学习、理解和知识表现为认知系统内部信息过程的不同组织层次。本文认为,对人工认知系统的形式分析可以为 "自然智能 "的典型机制提供新的启示,而且自然认知过程的模型可以促进人工智能网络模型的进一步发展。最后,简要讨论了聊天机器人交互的新可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Neural Network Learning, Attention, and Memory
The learning equations of an ANN are presented, giving an extremely concise derivation based on the principle of backpropagation through the descendent gradient. Then, a dual network is outlined acting between synapses of a basic ANN, which controls the learning process and coordinates the subnetworks selected by attention mechanisms toward purposeful behaviors. Mechanisms of memory and their affinity with comprehension are considered, by emphasizing the common role of abstraction and the interplay between assimilation and accommodation, in the spirit of Piaget’s analysis of psychological acquisition and genetic epistemology. Learning, comprehension, and knowledge are expressed as different levels of organization of informational processes inside cognitive systems. It is argued that formal analyses of cognitive artificial systems could shed new light on typical mechanisms of “natural intelligence” and, in a specular way, that models of natural cognition processes could promote further developments of ANN models. Finally, new possibilities of chatbot interaction are briefly discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信