{"title":"生物碳介导的 MoS2 纳米胶体层间扩展和导电网络可增强钾离子存储能力","authors":"Shuo Zhang, Zonggui Yin, Lili Wang, Mengyao Shu, Xin Liang, Sheng Liang, Lei Hu, Chonghai Deng, Kunhong Hu, Xiaobo Zhu","doi":"10.20517/energymater.2024.25","DOIUrl":null,"url":null,"abstract":"Potassium-ion batteries (PIBs) represent a promising battery technology for energy storage applications. Nevertheless, the progress of PIBs is still hindered by the lack of electrode materials that allow rapid and repeatable accommodation of the large K+ ions. Herein, a composite anode material containing interlayered-expanded MoS2 (55.6% larger) nanoroses in carbon nanonets (MoS2/C@CNs) is designed with the assistance of biomass bagasse, of which the dual carbon sources convert into interlayer and skeleton carbon, respectively. The unique structure facilitates electron/ion transport in the entire electrode and offers excellent structural stability, leading to much improved electrochemical performance compared to simple MoS2/C composite and pure MoS2. Furthermore, the role of electrolyte salts (potassium hexafluorophosphate and potassium bis(fluorosulfonyl)imide) and the electrolyte concentration on the interfacial properties in PIBs have been explored. The results indicate that the low-concentration potassium bis(fluorosulfonyl)imide electrolyte helps to produce optimized organic-inorganic solid electrolyte interface films, contributing to a capacity retention of 90% after 1,000 cycles at 2 A g-1.","PeriodicalId":516209,"journal":{"name":"Energy Materials","volume":"31 45","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interlayer expansion and conductive networking of MoS2 nanoroses mediated by bio-derived carbon for enhanced potassium-ion storage\",\"authors\":\"Shuo Zhang, Zonggui Yin, Lili Wang, Mengyao Shu, Xin Liang, Sheng Liang, Lei Hu, Chonghai Deng, Kunhong Hu, Xiaobo Zhu\",\"doi\":\"10.20517/energymater.2024.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Potassium-ion batteries (PIBs) represent a promising battery technology for energy storage applications. Nevertheless, the progress of PIBs is still hindered by the lack of electrode materials that allow rapid and repeatable accommodation of the large K+ ions. Herein, a composite anode material containing interlayered-expanded MoS2 (55.6% larger) nanoroses in carbon nanonets (MoS2/C@CNs) is designed with the assistance of biomass bagasse, of which the dual carbon sources convert into interlayer and skeleton carbon, respectively. The unique structure facilitates electron/ion transport in the entire electrode and offers excellent structural stability, leading to much improved electrochemical performance compared to simple MoS2/C composite and pure MoS2. Furthermore, the role of electrolyte salts (potassium hexafluorophosphate and potassium bis(fluorosulfonyl)imide) and the electrolyte concentration on the interfacial properties in PIBs have been explored. The results indicate that the low-concentration potassium bis(fluorosulfonyl)imide electrolyte helps to produce optimized organic-inorganic solid electrolyte interface films, contributing to a capacity retention of 90% after 1,000 cycles at 2 A g-1.\",\"PeriodicalId\":516209,\"journal\":{\"name\":\"Energy Materials\",\"volume\":\"31 45\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/energymater.2024.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2024.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interlayer expansion and conductive networking of MoS2 nanoroses mediated by bio-derived carbon for enhanced potassium-ion storage
Potassium-ion batteries (PIBs) represent a promising battery technology for energy storage applications. Nevertheless, the progress of PIBs is still hindered by the lack of electrode materials that allow rapid and repeatable accommodation of the large K+ ions. Herein, a composite anode material containing interlayered-expanded MoS2 (55.6% larger) nanoroses in carbon nanonets (MoS2/C@CNs) is designed with the assistance of biomass bagasse, of which the dual carbon sources convert into interlayer and skeleton carbon, respectively. The unique structure facilitates electron/ion transport in the entire electrode and offers excellent structural stability, leading to much improved electrochemical performance compared to simple MoS2/C composite and pure MoS2. Furthermore, the role of electrolyte salts (potassium hexafluorophosphate and potassium bis(fluorosulfonyl)imide) and the electrolyte concentration on the interfacial properties in PIBs have been explored. The results indicate that the low-concentration potassium bis(fluorosulfonyl)imide electrolyte helps to produce optimized organic-inorganic solid electrolyte interface films, contributing to a capacity retention of 90% after 1,000 cycles at 2 A g-1.