{"title":"KdV 方程解的 Wronskian 表示法","authors":"Pierre Gaillard","doi":"10.56557/japsi/2024/v16i28756","DOIUrl":null,"url":null,"abstract":"A method to construct solutions to the Korteweg-de-Vries (KdV) equation in terms of wronskians is given. For this, a particular type of polynomials is considered and we obtain for each positive integer n, rational solutions in terms of determinants of order n. \nExplicit solutions can be easily constructed and rational solutions from order 1 until order 10 are given.","PeriodicalId":322062,"journal":{"name":"Journal of Applied Physical Science International","volume":"24 25","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wronskian Representation of the Solutions to the KdV Equation\",\"authors\":\"Pierre Gaillard\",\"doi\":\"10.56557/japsi/2024/v16i28756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method to construct solutions to the Korteweg-de-Vries (KdV) equation in terms of wronskians is given. For this, a particular type of polynomials is considered and we obtain for each positive integer n, rational solutions in terms of determinants of order n. \\nExplicit solutions can be easily constructed and rational solutions from order 1 until order 10 are given.\",\"PeriodicalId\":322062,\"journal\":{\"name\":\"Journal of Applied Physical Science International\",\"volume\":\"24 25\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physical Science International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56557/japsi/2024/v16i28756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physical Science International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56557/japsi/2024/v16i28756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本论文给出了一种用褶积来构建 Korteweg-de-Vries (KdV) 方程解的方法。为此,我们考虑了一种特殊类型的多项式,并根据阶数 n 的行列式求出了每个正整数 n 的有理解。显式解可以很容易地构建,并给出了从阶数 1 到阶数 10 的有理解。
Wronskian Representation of the Solutions to the KdV Equation
A method to construct solutions to the Korteweg-de-Vries (KdV) equation in terms of wronskians is given. For this, a particular type of polynomials is considered and we obtain for each positive integer n, rational solutions in terms of determinants of order n.
Explicit solutions can be easily constructed and rational solutions from order 1 until order 10 are given.