基于评估机器学习算法的桥梁基础设施智能状态预测模型

IF 3.5 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Saleh Abu Dabous, Ahmad Alzghoul, F. Ibrahim
{"title":"基于评估机器学习算法的桥梁基础设施智能状态预测模型","authors":"Saleh Abu Dabous, Ahmad Alzghoul, F. Ibrahim","doi":"10.1108/sasbe-02-2024-0059","DOIUrl":null,"url":null,"abstract":"PurposePrediction models are essential tools for transportation agencies to forecast the condition of bridge decks based on available data, and artificial intelligence is paramount for this purpose. This study aims at proposing a bridge deck condition prediction model by assessing various classification and regression algorithms.Design/methodology/approachThe 2019 National Bridge Inventory database is considered for model development. Eight different feature selection techniques, along with their mean and frequency, are used to identify the critical features influencing deck condition ratings. Thereafter, four regression and four classification algorithms are applied to predict condition ratings based on the selected features, and their performances are evaluated and compared with respect to the mean absolute error (MAE).FindingsClassification algorithms outperform regression algorithms in predicting deck condition ratings. Due to its minimal MAE (0.369), the random forest classifier with eleven features is recommended as the preferred condition prediction model. The identified dominant features are superstructure condition, age, structural evaluation, substructure condition, inventory rating, maximum span length, deck area, average daily traffic, operating rating, deck width, and the number of spans.Practical implicationsThe proposed bridge deck condition prediction model offers a valuable tool for transportation agencies to plan maintenance and resource allocation efficiently, ultimately improving bridge safety and serviceability.Originality/valueThis study provides a detailed framework for applying machine learning in bridge condition prediction that applies to any bridge inventory database. Moreover, it uses a comprehensive dataset encompassing an entire region, broadening the model’s applicability and representation.","PeriodicalId":45779,"journal":{"name":"Smart and Sustainable Built Environment","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent condition prediction model for bridge infrastructure based on evaluating machine learning algorithms\",\"authors\":\"Saleh Abu Dabous, Ahmad Alzghoul, F. Ibrahim\",\"doi\":\"10.1108/sasbe-02-2024-0059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposePrediction models are essential tools for transportation agencies to forecast the condition of bridge decks based on available data, and artificial intelligence is paramount for this purpose. This study aims at proposing a bridge deck condition prediction model by assessing various classification and regression algorithms.Design/methodology/approachThe 2019 National Bridge Inventory database is considered for model development. Eight different feature selection techniques, along with their mean and frequency, are used to identify the critical features influencing deck condition ratings. Thereafter, four regression and four classification algorithms are applied to predict condition ratings based on the selected features, and their performances are evaluated and compared with respect to the mean absolute error (MAE).FindingsClassification algorithms outperform regression algorithms in predicting deck condition ratings. Due to its minimal MAE (0.369), the random forest classifier with eleven features is recommended as the preferred condition prediction model. The identified dominant features are superstructure condition, age, structural evaluation, substructure condition, inventory rating, maximum span length, deck area, average daily traffic, operating rating, deck width, and the number of spans.Practical implicationsThe proposed bridge deck condition prediction model offers a valuable tool for transportation agencies to plan maintenance and resource allocation efficiently, ultimately improving bridge safety and serviceability.Originality/valueThis study provides a detailed framework for applying machine learning in bridge condition prediction that applies to any bridge inventory database. Moreover, it uses a comprehensive dataset encompassing an entire region, broadening the model’s applicability and representation.\",\"PeriodicalId\":45779,\"journal\":{\"name\":\"Smart and Sustainable Built Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart and Sustainable Built Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/sasbe-02-2024-0059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart and Sustainable Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/sasbe-02-2024-0059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的预测模型是交通机构根据现有数据预测桥面状况的重要工具,而人工智能在这方面至关重要。本研究旨在通过评估各种分类和回归算法,提出一种桥面状况预测模型。使用八种不同的特征选择技术及其平均值和频率来确定影响桥面状况评级的关键特征。然后,根据所选特征,采用四种回归算法和四种分类算法预测状况评级,并根据平均绝对误差(MAE)对其性能进行评估和比较。由于平均绝对误差最小(0.369),推荐使用具有 11 个特征的随机森林分类器作为首选的状况预测模型。所确定的主要特征包括上部结构状况、年龄、结构评估、下部结构状况、库存评级、最大跨度长度、桥面面积、日均交通量、运营评级、桥面宽度和跨度数量。此外,它还使用了涵盖整个地区的综合数据集,从而扩大了模型的适用性和代表性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent condition prediction model for bridge infrastructure based on evaluating machine learning algorithms
PurposePrediction models are essential tools for transportation agencies to forecast the condition of bridge decks based on available data, and artificial intelligence is paramount for this purpose. This study aims at proposing a bridge deck condition prediction model by assessing various classification and regression algorithms.Design/methodology/approachThe 2019 National Bridge Inventory database is considered for model development. Eight different feature selection techniques, along with their mean and frequency, are used to identify the critical features influencing deck condition ratings. Thereafter, four regression and four classification algorithms are applied to predict condition ratings based on the selected features, and their performances are evaluated and compared with respect to the mean absolute error (MAE).FindingsClassification algorithms outperform regression algorithms in predicting deck condition ratings. Due to its minimal MAE (0.369), the random forest classifier with eleven features is recommended as the preferred condition prediction model. The identified dominant features are superstructure condition, age, structural evaluation, substructure condition, inventory rating, maximum span length, deck area, average daily traffic, operating rating, deck width, and the number of spans.Practical implicationsThe proposed bridge deck condition prediction model offers a valuable tool for transportation agencies to plan maintenance and resource allocation efficiently, ultimately improving bridge safety and serviceability.Originality/valueThis study provides a detailed framework for applying machine learning in bridge condition prediction that applies to any bridge inventory database. Moreover, it uses a comprehensive dataset encompassing an entire region, broadening the model’s applicability and representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart and Sustainable Built Environment
Smart and Sustainable Built Environment GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY-
CiteScore
9.20
自引率
8.30%
发文量
53
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信