水下机械手的水动力系数和流场特性数值研究

IF 1.1 4区 工程技术 Q4 MECHANICS
S. Dai, S. Ren, X. Liu, D. Duan, H. Jin, H. Zhang
{"title":"水下机械手的水动力系数和流场特性数值研究","authors":"S. Dai, S. Ren, X. Liu, D. Duan, H. Jin, H. Zhang","doi":"10.47176/jafm.17.9.2564","DOIUrl":null,"url":null,"abstract":"The hydrodynamic coefficient of an underwater manipulator varies with changes in posture and flow field, presenting significant challenges for precise control and localization. This study, conducted numerical simulations to investigate the patterns of variation in flow field and hydrodynamic coefficients. Results showed that hydrodynamic performance remained consistent when the posture of the manipulator was either axisymmetric or origin-symmetric. Upon rotation, axial flow extended across the entire downstream surface, and the Karman vortex street entirely eliminated. Pressure coefficients on the back pressure surface of the manipulator increased with the Reynolds number within the range of 6×103 ≤ Re ≤ 3×104, while the pressure coefficient on the upstream surface remained unchanged. Within this range, drag coefficients for the upper and lower arms decreased by 27.4% and 23.9%, respectively. The hydrodynamic performance of the lower arm was independent of the upper arm's posture, with a maximum drag coefficient of 1.48 achieved at α = −90°. As the posture angle of the manipulator varied from 30° to 60°, the pressure coefficient on the upstream surface decreased from 0.75 to 0.25.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Study on the Hydrodynamic Coefficients and Flow Field Characteristics of Underwater Manipulator\",\"authors\":\"S. Dai, S. Ren, X. Liu, D. Duan, H. Jin, H. Zhang\",\"doi\":\"10.47176/jafm.17.9.2564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hydrodynamic coefficient of an underwater manipulator varies with changes in posture and flow field, presenting significant challenges for precise control and localization. This study, conducted numerical simulations to investigate the patterns of variation in flow field and hydrodynamic coefficients. Results showed that hydrodynamic performance remained consistent when the posture of the manipulator was either axisymmetric or origin-symmetric. Upon rotation, axial flow extended across the entire downstream surface, and the Karman vortex street entirely eliminated. Pressure coefficients on the back pressure surface of the manipulator increased with the Reynolds number within the range of 6×103 ≤ Re ≤ 3×104, while the pressure coefficient on the upstream surface remained unchanged. Within this range, drag coefficients for the upper and lower arms decreased by 27.4% and 23.9%, respectively. The hydrodynamic performance of the lower arm was independent of the upper arm's posture, with a maximum drag coefficient of 1.48 achieved at α = −90°. As the posture angle of the manipulator varied from 30° to 60°, the pressure coefficient on the upstream surface decreased from 0.75 to 0.25.\",\"PeriodicalId\":49041,\"journal\":{\"name\":\"Journal of Applied Fluid Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.47176/jafm.17.9.2564\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.9.2564","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

水下机械手的水动力系数会随着姿态和流场的变化而变化,这给精确控制和定位带来了巨大挑战。本研究通过数值模拟来研究流场和水动力系数的变化规律。结果表明,当机械手的姿态为轴对称或原点对称时,流体力学性能保持一致。旋转时,轴向流延伸至整个下游表面,卡曼涡街完全消失。在 6×103 ≤ Re ≤ 3×104 的范围内,机械手背压表面的压力系数随雷诺数的增加而增加,而上游表面的压力系数保持不变。在此范围内,上臂和下臂的阻力系数分别降低了 27.4% 和 23.9%。下臂的流体力学性能与上臂的姿势无关,α = -90°时的最大阻力系数为 1.48。当机械手的姿态角从 30° 变化到 60° 时,上游表面的压力系数从 0.75 降至 0.25。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Study on the Hydrodynamic Coefficients and Flow Field Characteristics of Underwater Manipulator
The hydrodynamic coefficient of an underwater manipulator varies with changes in posture and flow field, presenting significant challenges for precise control and localization. This study, conducted numerical simulations to investigate the patterns of variation in flow field and hydrodynamic coefficients. Results showed that hydrodynamic performance remained consistent when the posture of the manipulator was either axisymmetric or origin-symmetric. Upon rotation, axial flow extended across the entire downstream surface, and the Karman vortex street entirely eliminated. Pressure coefficients on the back pressure surface of the manipulator increased with the Reynolds number within the range of 6×103 ≤ Re ≤ 3×104, while the pressure coefficient on the upstream surface remained unchanged. Within this range, drag coefficients for the upper and lower arms decreased by 27.4% and 23.9%, respectively. The hydrodynamic performance of the lower arm was independent of the upper arm's posture, with a maximum drag coefficient of 1.48 achieved at α = −90°. As the posture angle of the manipulator varied from 30° to 60°, the pressure coefficient on the upstream surface decreased from 0.75 to 0.25.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信