Nawaf Muteb Alharbi, B. M. Alghamdi, Osama Mohammed Alali, Khalid Nabeel Alfaleh, Abdullah Almohammedalie, Majed Abdesamie, T. Baroud
{"title":"研究不同的热处理方法以提高 9254 钢的机械性能","authors":"Nawaf Muteb Alharbi, B. M. Alghamdi, Osama Mohammed Alali, Khalid Nabeel Alfaleh, Abdullah Almohammedalie, Majed Abdesamie, T. Baroud","doi":"10.4028/p-jEt7wn","DOIUrl":null,"url":null,"abstract":"This study investigates the impact of varied heat treatment parameters on the mechanical and metallurgical characteristics of 9254 steel. Different cylindrical specimens underwent controlled heat treatments targeting three different phases. The interplay of time and temperature was systematically explored to understand their influence on bending strength, bending deflection, hardness, and microstructural evolution. The results revealed that a partially tempered martensitic structure exhibiting an exceptional ultimate strength of 4308 MPa. Achieving this involved a heat treatment, starting at 900°C for 30 minutes, followed by rapid cooling in an oil bath, quenching at 165°C for 5 minutes, annealing at 180°C for 60 minutes, and gradual air-cooling. This treatment regimen produced a specimen with a desirable combination of mechanical properties, showcasing its potential significance in advanced engineering applications.","PeriodicalId":17714,"journal":{"name":"Key Engineering Materials","volume":"98 4","pages":"33 - 39"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating Different Heat Treatment Methods to Enhance the Mechanical Properties of 9254 Steel\",\"authors\":\"Nawaf Muteb Alharbi, B. M. Alghamdi, Osama Mohammed Alali, Khalid Nabeel Alfaleh, Abdullah Almohammedalie, Majed Abdesamie, T. Baroud\",\"doi\":\"10.4028/p-jEt7wn\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the impact of varied heat treatment parameters on the mechanical and metallurgical characteristics of 9254 steel. Different cylindrical specimens underwent controlled heat treatments targeting three different phases. The interplay of time and temperature was systematically explored to understand their influence on bending strength, bending deflection, hardness, and microstructural evolution. The results revealed that a partially tempered martensitic structure exhibiting an exceptional ultimate strength of 4308 MPa. Achieving this involved a heat treatment, starting at 900°C for 30 minutes, followed by rapid cooling in an oil bath, quenching at 165°C for 5 minutes, annealing at 180°C for 60 minutes, and gradual air-cooling. This treatment regimen produced a specimen with a desirable combination of mechanical properties, showcasing its potential significance in advanced engineering applications.\",\"PeriodicalId\":17714,\"journal\":{\"name\":\"Key Engineering Materials\",\"volume\":\"98 4\",\"pages\":\"33 - 39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Key Engineering Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-jEt7wn\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Key Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-jEt7wn","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigating Different Heat Treatment Methods to Enhance the Mechanical Properties of 9254 Steel
This study investigates the impact of varied heat treatment parameters on the mechanical and metallurgical characteristics of 9254 steel. Different cylindrical specimens underwent controlled heat treatments targeting three different phases. The interplay of time and temperature was systematically explored to understand their influence on bending strength, bending deflection, hardness, and microstructural evolution. The results revealed that a partially tempered martensitic structure exhibiting an exceptional ultimate strength of 4308 MPa. Achieving this involved a heat treatment, starting at 900°C for 30 minutes, followed by rapid cooling in an oil bath, quenching at 165°C for 5 minutes, annealing at 180°C for 60 minutes, and gradual air-cooling. This treatment regimen produced a specimen with a desirable combination of mechanical properties, showcasing its potential significance in advanced engineering applications.