Xu Zhao, X. Yuan, Yufeng Dong, K. Glize, Yihang Zhang, Jun Zheng, C. Xing, Haochen Gu, Chenglong Zhang, Yu Dai, Ke Fang, Zhe Zhang, Yan Rui, Fuyuan Wu, Jie Zhang
{"title":"测量与 \"神光-II \"升级版激光设备直驱条件相关的双锥点火实验中的激光等离子体不稳定性","authors":"Xu Zhao, X. Yuan, Yufeng Dong, K. Glize, Yihang Zhang, Jun Zheng, C. Xing, Haochen Gu, Chenglong Zhang, Yu Dai, Ke Fang, Zhe Zhang, Yan Rui, Fuyuan Wu, Jie Zhang","doi":"10.1088/1741-4326/ad5e98","DOIUrl":null,"url":null,"abstract":"\n Experiments have been performed to investigate laser-plasma instabilities (LPIs) relevant to the direct-drive inertial confinement fusion (ICF) conditions at the Shenguang-II Upgrade (SG-II UP) laser facility during the double-cone ignition (DCI) experimental campaigns, with the overlapped laser intensity ranging from 6×1014 W/cm2 to 1.8×1015 W/cm2. An overall LPI scenario has been built from the collection and investigation of angularly distributed scattered light. Across broad ranges of laser and plasma parameters, relevant to the direct-drive ICF conditions, the dominance of the stimulated Raman side scattering (SRSS) was confirmed, and its coexistence with the two-plasmon decay (TPD) was also observed. Significant SRSS scattered light was observed across an extremely wide range of emission angles, concentrated at large angles, and demonstrated to be robust throughout the parameter space. Time-resolved spectral measurements show distinctly different SRSS behaviors along different angles and a slightly higher threshold compared to the TPD. The overall SRSS energy loss was measured, indicating a scattered light energy fraction of up to 6%. These results are of crucial importance for the precise assessment of the LPIs in the DCI as well as other laser directly driven ICF schemes.","PeriodicalId":503481,"journal":{"name":"Nuclear Fusion","volume":"112 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurements of laser-plasma instabilities in double-cone ignition experiments relevant to the direct-drive conditions at Shenguang-II Upgrade laser facility\",\"authors\":\"Xu Zhao, X. Yuan, Yufeng Dong, K. Glize, Yihang Zhang, Jun Zheng, C. Xing, Haochen Gu, Chenglong Zhang, Yu Dai, Ke Fang, Zhe Zhang, Yan Rui, Fuyuan Wu, Jie Zhang\",\"doi\":\"10.1088/1741-4326/ad5e98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Experiments have been performed to investigate laser-plasma instabilities (LPIs) relevant to the direct-drive inertial confinement fusion (ICF) conditions at the Shenguang-II Upgrade (SG-II UP) laser facility during the double-cone ignition (DCI) experimental campaigns, with the overlapped laser intensity ranging from 6×1014 W/cm2 to 1.8×1015 W/cm2. An overall LPI scenario has been built from the collection and investigation of angularly distributed scattered light. Across broad ranges of laser and plasma parameters, relevant to the direct-drive ICF conditions, the dominance of the stimulated Raman side scattering (SRSS) was confirmed, and its coexistence with the two-plasmon decay (TPD) was also observed. Significant SRSS scattered light was observed across an extremely wide range of emission angles, concentrated at large angles, and demonstrated to be robust throughout the parameter space. Time-resolved spectral measurements show distinctly different SRSS behaviors along different angles and a slightly higher threshold compared to the TPD. The overall SRSS energy loss was measured, indicating a scattered light energy fraction of up to 6%. These results are of crucial importance for the precise assessment of the LPIs in the DCI as well as other laser directly driven ICF schemes.\",\"PeriodicalId\":503481,\"journal\":{\"name\":\"Nuclear Fusion\",\"volume\":\"112 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-4326/ad5e98\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad5e98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measurements of laser-plasma instabilities in double-cone ignition experiments relevant to the direct-drive conditions at Shenguang-II Upgrade laser facility
Experiments have been performed to investigate laser-plasma instabilities (LPIs) relevant to the direct-drive inertial confinement fusion (ICF) conditions at the Shenguang-II Upgrade (SG-II UP) laser facility during the double-cone ignition (DCI) experimental campaigns, with the overlapped laser intensity ranging from 6×1014 W/cm2 to 1.8×1015 W/cm2. An overall LPI scenario has been built from the collection and investigation of angularly distributed scattered light. Across broad ranges of laser and plasma parameters, relevant to the direct-drive ICF conditions, the dominance of the stimulated Raman side scattering (SRSS) was confirmed, and its coexistence with the two-plasmon decay (TPD) was also observed. Significant SRSS scattered light was observed across an extremely wide range of emission angles, concentrated at large angles, and demonstrated to be robust throughout the parameter space. Time-resolved spectral measurements show distinctly different SRSS behaviors along different angles and a slightly higher threshold compared to the TPD. The overall SRSS energy loss was measured, indicating a scattered light energy fraction of up to 6%. These results are of crucial importance for the precise assessment of the LPIs in the DCI as well as other laser directly driven ICF schemes.