伯恩斯坦-尼克尔斯基-马尔科夫式不等式在有尖顶区域的加权勒贝格空间中的代数多项式

IF 0.8 4区 数学 Q2 MATHEMATICS
U. Değer, Fahreddi̇n Abdullayev
{"title":"伯恩斯坦-尼克尔斯基-马尔科夫式不等式在有尖顶区域的加权勒贝格空间中的代数多项式","authors":"U. Değer, Fahreddi̇n Abdullayev","doi":"10.55730/1300-0098.3536","DOIUrl":null,"url":null,"abstract":": In this paper, we study Bernstein-Nikol’skii-Markov type inequalities for arbitrary algebraic polynomials with respect to a weighted Lebesgue space, where the weight functions have some singularities on a given contour. We consider curves which can contain a finite number of exterior and interior corners with power law tangency of the boundary arcs at those points where the weight functions have both zeros and poles of finite order. The estimates are given for the growth of the module of derivatives for algebraic polynomials on the closure of a region bounded by a given curve, depending on the behavior of weight functions, on the property of curve, and on the degree of contact of the boundary arcs, which form zero angles on the boundary.","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bernstein-Nikol’skii-Markov-type inequalities for algebraic polynomials in aweighted Lebesgue space in regions with cusps\",\"authors\":\"U. Değer, Fahreddi̇n Abdullayev\",\"doi\":\"10.55730/1300-0098.3536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In this paper, we study Bernstein-Nikol’skii-Markov type inequalities for arbitrary algebraic polynomials with respect to a weighted Lebesgue space, where the weight functions have some singularities on a given contour. We consider curves which can contain a finite number of exterior and interior corners with power law tangency of the boundary arcs at those points where the weight functions have both zeros and poles of finite order. The estimates are given for the growth of the module of derivatives for algebraic polynomials on the closure of a region bounded by a given curve, depending on the behavior of weight functions, on the property of curve, and on the degree of contact of the boundary arcs, which form zero angles on the boundary.\",\"PeriodicalId\":51206,\"journal\":{\"name\":\"Turkish Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0098.3536\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.55730/1300-0098.3536","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

:本文研究任意代数多项式关于加权 Lebesgue 空间的 Bernstein-Nikol'skii-Markov 型不等式,其中权函数在给定轮廓上有一些奇点。我们考虑的曲线可能包含有限数量的外角和内角,在这些点上的边界弧具有幂律相切性,而在这些点上的权函数既有零点也有有限阶的极点。根据权函数的行为、曲线的性质以及在边界上形成零角的边界弧的接触程度,给出了代数多项式在给定曲线所限定区域的闭合上的导数模块增长的估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bernstein-Nikol’skii-Markov-type inequalities for algebraic polynomials in aweighted Lebesgue space in regions with cusps
: In this paper, we study Bernstein-Nikol’skii-Markov type inequalities for arbitrary algebraic polynomials with respect to a weighted Lebesgue space, where the weight functions have some singularities on a given contour. We consider curves which can contain a finite number of exterior and interior corners with power law tangency of the boundary arcs at those points where the weight functions have both zeros and poles of finite order. The estimates are given for the growth of the module of derivatives for algebraic polynomials on the closure of a region bounded by a given curve, depending on the behavior of weight functions, on the property of curve, and on the degree of contact of the boundary arcs, which form zero angles on the boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信