Arvee Prajapati, Shagun Rangra, Rashmi Patil, Nimeet Desai, V. G. Jyothi, Sagar Salave, Prakash Amate, Derajram Benival, Nagavendra Kommineni
{"title":"用于癌症治疗的受体靶向纳米药物","authors":"Arvee Prajapati, Shagun Rangra, Rashmi Patil, Nimeet Desai, V. G. Jyothi, Sagar Salave, Prakash Amate, Derajram Benival, Nagavendra Kommineni","doi":"10.3390/receptors3030016","DOIUrl":null,"url":null,"abstract":"Receptor-targeted drug delivery has been extensively explored for active targeting of therapeutic moiety in cancer treatment. In this review, we discuss the receptors that are overexpressed on tumor cells and have the potential to be targeted by nanocarrier systems for cancer treatment. We also highlight the different types of nanocarrier systems and targeting ligands that researchers have explored. Our discussion covers various therapeutic modalities, including small molecules, aptamers, peptides, antibodies, and cell-based targeting strategies, and focuses on clinical developments. Additionally, this article highlights the challenges that arise during the clinical translation of nanocarrier-based targeting strategies. It also provides future directions for improving research in the area of clinically translatable cancer-targeted therapy to improve treatment efficacy while minimizing toxicity.","PeriodicalId":507548,"journal":{"name":"Receptors","volume":"12 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Receptor-Targeted Nanomedicine for Cancer Therapy\",\"authors\":\"Arvee Prajapati, Shagun Rangra, Rashmi Patil, Nimeet Desai, V. G. Jyothi, Sagar Salave, Prakash Amate, Derajram Benival, Nagavendra Kommineni\",\"doi\":\"10.3390/receptors3030016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Receptor-targeted drug delivery has been extensively explored for active targeting of therapeutic moiety in cancer treatment. In this review, we discuss the receptors that are overexpressed on tumor cells and have the potential to be targeted by nanocarrier systems for cancer treatment. We also highlight the different types of nanocarrier systems and targeting ligands that researchers have explored. Our discussion covers various therapeutic modalities, including small molecules, aptamers, peptides, antibodies, and cell-based targeting strategies, and focuses on clinical developments. Additionally, this article highlights the challenges that arise during the clinical translation of nanocarrier-based targeting strategies. It also provides future directions for improving research in the area of clinically translatable cancer-targeted therapy to improve treatment efficacy while minimizing toxicity.\",\"PeriodicalId\":507548,\"journal\":{\"name\":\"Receptors\",\"volume\":\"12 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Receptors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/receptors3030016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Receptors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/receptors3030016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Receptor-targeted drug delivery has been extensively explored for active targeting of therapeutic moiety in cancer treatment. In this review, we discuss the receptors that are overexpressed on tumor cells and have the potential to be targeted by nanocarrier systems for cancer treatment. We also highlight the different types of nanocarrier systems and targeting ligands that researchers have explored. Our discussion covers various therapeutic modalities, including small molecules, aptamers, peptides, antibodies, and cell-based targeting strategies, and focuses on clinical developments. Additionally, this article highlights the challenges that arise during the clinical translation of nanocarrier-based targeting strategies. It also provides future directions for improving research in the area of clinically translatable cancer-targeted therapy to improve treatment efficacy while minimizing toxicity.