具有符号变化格林函数的高阶卡普托边界值问题的正解和递减解

IF 0.8 4区 数学 Q2 MATHEMATICS
Rian Yan, Yige Zhao, Xuan Leng, Yabing Li
{"title":"具有符号变化格林函数的高阶卡普托边界值问题的正解和递减解","authors":"Rian Yan, Yige Zhao, Xuan Leng, Yabing Li","doi":"10.55730/1300-0098.3532","DOIUrl":null,"url":null,"abstract":": In this paper, Caputo boundary value problems of order 3 < ζ ≤ 4 are investigated on the interval [0 , 1] . By Guo-Krasnoselskii fixed point theorem, some criteria of existence and multiplicity of positive and decreasing solutions are established. The main novelty of the paper lies in its capability to achieve positive solutions while the corresponding Green’s function changes sign. Finally, two examples are provided to illustrate the application of these results.","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive and decreasing solutions for higher order Caputo boundary valueproblems with sign-changing Green’s function\",\"authors\":\"Rian Yan, Yige Zhao, Xuan Leng, Yabing Li\",\"doi\":\"10.55730/1300-0098.3532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In this paper, Caputo boundary value problems of order 3 < ζ ≤ 4 are investigated on the interval [0 , 1] . By Guo-Krasnoselskii fixed point theorem, some criteria of existence and multiplicity of positive and decreasing solutions are established. The main novelty of the paper lies in its capability to achieve positive solutions while the corresponding Green’s function changes sign. Finally, two examples are provided to illustrate the application of these results.\",\"PeriodicalId\":51206,\"journal\":{\"name\":\"Turkish Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0098.3532\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.55730/1300-0098.3532","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

:本文研究了区间 [0 , 1] 上阶数为 3 < ζ ≤ 4 的卡普托边界值问题。通过郭-克拉斯诺斯基(Guo-Krasnoselskii)定点定理,建立了正解和递减解的存在性和多重性的一些标准。本文的主要新颖之处在于,它能够在相应的格林函数符号发生变化时实现正解。最后,本文提供了两个例子来说明这些结果的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positive and decreasing solutions for higher order Caputo boundary valueproblems with sign-changing Green’s function
: In this paper, Caputo boundary value problems of order 3 < ζ ≤ 4 are investigated on the interval [0 , 1] . By Guo-Krasnoselskii fixed point theorem, some criteria of existence and multiplicity of positive and decreasing solutions are established. The main novelty of the paper lies in its capability to achieve positive solutions while the corresponding Green’s function changes sign. Finally, two examples are provided to illustrate the application of these results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信