资源节约型深度学习:微控制器上的快速手势

Tuan Kiet Tran Mach, Khai Nguyen Van, Minhhuy Le
{"title":"资源节约型深度学习:微控制器上的快速手势","authors":"Tuan Kiet Tran Mach, Khai Nguyen Van, Minhhuy Le","doi":"10.4108/eetinis.v11i3.5616","DOIUrl":null,"url":null,"abstract":"Hand gesture recognition using a camera provides an intuitive and promising means of human-computer interaction and allows operators to execute commands and control machines with simple gestures. Research in hand gesture recognition-based control systems has garnered significant attention, yet the deploying of microcontrollers into this domain remains relatively insignificant. In this study, we propose a novel approach utilizing micro-hand gesture recognition built on micro-bottleneck Residual and micro-bottleneck Conv blocks. Our proposed model, comprises only 42K parameters, is optimized for size to facilitate seamless operation on resource-constrained hardware. Benchmarking conducted on STM32 microcontrollers showcases remarkable efficiency, with the model achieving an average prediction time of just 269ms, marking a 7× faster over the state-of-art model. Notably, despite its compact size and enhanced speed, our model maintains competitive performance result, achieving an accuracy of 99.6% on the ASL dataset and 92% on OUHANDS dataset. These findings underscore the potential for deploying advanced control methods on compact, cost-effective devices, presenting promising avenues for future research and industrial applications.","PeriodicalId":502655,"journal":{"name":"EAI Endorsed Trans. Ind. Networks Intell. Syst.","volume":" 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resource-Efficient Deep Learning: Fast Hand Gestures on Microcontrollers\",\"authors\":\"Tuan Kiet Tran Mach, Khai Nguyen Van, Minhhuy Le\",\"doi\":\"10.4108/eetinis.v11i3.5616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hand gesture recognition using a camera provides an intuitive and promising means of human-computer interaction and allows operators to execute commands and control machines with simple gestures. Research in hand gesture recognition-based control systems has garnered significant attention, yet the deploying of microcontrollers into this domain remains relatively insignificant. In this study, we propose a novel approach utilizing micro-hand gesture recognition built on micro-bottleneck Residual and micro-bottleneck Conv blocks. Our proposed model, comprises only 42K parameters, is optimized for size to facilitate seamless operation on resource-constrained hardware. Benchmarking conducted on STM32 microcontrollers showcases remarkable efficiency, with the model achieving an average prediction time of just 269ms, marking a 7× faster over the state-of-art model. Notably, despite its compact size and enhanced speed, our model maintains competitive performance result, achieving an accuracy of 99.6% on the ASL dataset and 92% on OUHANDS dataset. These findings underscore the potential for deploying advanced control methods on compact, cost-effective devices, presenting promising avenues for future research and industrial applications.\",\"PeriodicalId\":502655,\"journal\":{\"name\":\"EAI Endorsed Trans. Ind. Networks Intell. Syst.\",\"volume\":\" 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Trans. Ind. Networks Intell. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eetinis.v11i3.5616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Ind. Networks Intell. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetinis.v11i3.5616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用摄像头进行手势识别为人机交互提供了一种直观且前景广阔的手段,操作员可以通过简单的手势执行命令和控制机器。基于手势识别的控制系统研究已引起了广泛关注,但微控制器在这一领域的应用仍相对较少。在本研究中,我们提出了一种基于微瓶颈 Residual 和微瓶颈 Conv 模块的微型手势识别新方法。我们提出的模型仅包含 42K 个参数,在尺寸上进行了优化,以方便在资源受限的硬件上无缝运行。在 STM32 微控制器上进行的基准测试表明,该模型的效率非常高,平均预测时间仅为 269 毫秒,比最先进的模型快 7 倍。值得注意的是,尽管我们的模型体积小巧、速度更快,但仍然保持了极具竞争力的性能,在 ASL 数据集上的准确率达到 99.6%,在 OUHANDS 数据集上的准确率达到 92%。这些发现强调了在紧凑型、高性价比设备上部署先进控制方法的潜力,为未来的研究和工业应用提供了广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resource-Efficient Deep Learning: Fast Hand Gestures on Microcontrollers
Hand gesture recognition using a camera provides an intuitive and promising means of human-computer interaction and allows operators to execute commands and control machines with simple gestures. Research in hand gesture recognition-based control systems has garnered significant attention, yet the deploying of microcontrollers into this domain remains relatively insignificant. In this study, we propose a novel approach utilizing micro-hand gesture recognition built on micro-bottleneck Residual and micro-bottleneck Conv blocks. Our proposed model, comprises only 42K parameters, is optimized for size to facilitate seamless operation on resource-constrained hardware. Benchmarking conducted on STM32 microcontrollers showcases remarkable efficiency, with the model achieving an average prediction time of just 269ms, marking a 7× faster over the state-of-art model. Notably, despite its compact size and enhanced speed, our model maintains competitive performance result, achieving an accuracy of 99.6% on the ASL dataset and 92% on OUHANDS dataset. These findings underscore the potential for deploying advanced control methods on compact, cost-effective devices, presenting promising avenues for future research and industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信