未来可持续和弹性能源系统的智能技术和解决方案

V. Terzija, Lei Ding
{"title":"未来可持续和弹性能源系统的智能技术和解决方案","authors":"V. Terzija, Lei Ding","doi":"10.21285/1814-3520-2024-2-346-359","DOIUrl":null,"url":null,"abstract":"The main objective of this research is to analyze current problems and methods proposed for solving problems of design, operation and planning for the development of future sustainable electric power systems, taking into account the integration of renewable energy sources, the integration of heat and gas networks using highspeed communication channels. The author’s method of ensuring system stability and protecting the integrity of electric power systems is outlined. To ensure stable operation of future electric power systems, it is proposed to use methods of multi-level optimization and control of digital power systems, smart grid technologies and methods for processing vector measurements based on cyber-secure communication channels. It has been established that the proposed schemes make it possible to ensure the stability of the system and protect its integrity. In order to demonstrate the effectiveness of such approaches, an example is given of solving the problem of preventing rolling blackouts of the power system by purposefully separating/isolating the system based on the author’s twostage controlled isolation algorithm. It is shown that to solve the problems of modern electric power industry, it is effective to use new telecommunication technologies, means of ensuring situational awareness and schemes for protecting the integrity of systems based on modern methods of operations research and artificial intelligence. The multicriteria optimization method proposed by the authors uses minimization of the objective function of power flow disruption and takes into account restrictions on the consistency of generator operation. The method was tested on an IEEE test circuit consisting of 118 nodes. Test calculations confirmed that the method allows for minimal power imbalance and minimal disruption of power flows. Thus, the results of the work open up new opportunities for improving the monitoring and protection of future sustainable electricity systems, including taking into account the integration of renewable energy sources, heat and gas networks.","PeriodicalId":488940,"journal":{"name":"iPolytech Journal","volume":" 33","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart technologies and solutions for future sustainable and resilient energy systems\",\"authors\":\"V. Terzija, Lei Ding\",\"doi\":\"10.21285/1814-3520-2024-2-346-359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this research is to analyze current problems and methods proposed for solving problems of design, operation and planning for the development of future sustainable electric power systems, taking into account the integration of renewable energy sources, the integration of heat and gas networks using highspeed communication channels. The author’s method of ensuring system stability and protecting the integrity of electric power systems is outlined. To ensure stable operation of future electric power systems, it is proposed to use methods of multi-level optimization and control of digital power systems, smart grid technologies and methods for processing vector measurements based on cyber-secure communication channels. It has been established that the proposed schemes make it possible to ensure the stability of the system and protect its integrity. In order to demonstrate the effectiveness of such approaches, an example is given of solving the problem of preventing rolling blackouts of the power system by purposefully separating/isolating the system based on the author’s twostage controlled isolation algorithm. It is shown that to solve the problems of modern electric power industry, it is effective to use new telecommunication technologies, means of ensuring situational awareness and schemes for protecting the integrity of systems based on modern methods of operations research and artificial intelligence. The multicriteria optimization method proposed by the authors uses minimization of the objective function of power flow disruption and takes into account restrictions on the consistency of generator operation. The method was tested on an IEEE test circuit consisting of 118 nodes. Test calculations confirmed that the method allows for minimal power imbalance and minimal disruption of power flows. Thus, the results of the work open up new opportunities for improving the monitoring and protection of future sustainable electricity systems, including taking into account the integration of renewable energy sources, heat and gas networks.\",\"PeriodicalId\":488940,\"journal\":{\"name\":\"iPolytech Journal\",\"volume\":\" 33\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iPolytech Journal\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.21285/1814-3520-2024-2-346-359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iPolytech Journal","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.21285/1814-3520-2024-2-346-359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的主要目的是分析当前存在的问题,以及为解决未来可持续电力系统的设计、运行和规划发展问题而提出的方法,同时考虑到可再生能源的整合、使用高速通信通道的热网和气网的整合。作者概述了确保系统稳定性和保护电力系统完整性的方法。为确保未来电力系统的稳定运行,建议使用数字电力系统多级优化和控制方法、智能电网技术和基于网络安全通信信道的矢量测量处理方法。已经证实,所提出的方案能够确保系统的稳定性并保护其完整性。为了证明这些方法的有效性,举例说明了如何根据作者的两级受控隔离算法,有目的地分离/隔离系统,从而解决防止电力系统滚动停电的问题。研究表明,要解决现代电力工业的问题,使用新的电信技术、确保态势感知的手段以及基于现代运筹学和人工智能方法的保护系统完整性的方案是有效的。作者提出的多标准优化方法采用了电力流中断目标函数的最小化,并考虑了对发电机运行一致性的限制。该方法在由 118 个节点组成的 IEEE 测试电路上进行了测试。测试计算证实,该方法可实现最小功率不平衡和最小功率流中断。因此,这项工作的成果为改善未来可持续电力系统的监控和保护提供了新的机遇,包括考虑到可再生能源、热能和天然气网络的整合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smart technologies and solutions for future sustainable and resilient energy systems
The main objective of this research is to analyze current problems and methods proposed for solving problems of design, operation and planning for the development of future sustainable electric power systems, taking into account the integration of renewable energy sources, the integration of heat and gas networks using highspeed communication channels. The author’s method of ensuring system stability and protecting the integrity of electric power systems is outlined. To ensure stable operation of future electric power systems, it is proposed to use methods of multi-level optimization and control of digital power systems, smart grid technologies and methods for processing vector measurements based on cyber-secure communication channels. It has been established that the proposed schemes make it possible to ensure the stability of the system and protect its integrity. In order to demonstrate the effectiveness of such approaches, an example is given of solving the problem of preventing rolling blackouts of the power system by purposefully separating/isolating the system based on the author’s twostage controlled isolation algorithm. It is shown that to solve the problems of modern electric power industry, it is effective to use new telecommunication technologies, means of ensuring situational awareness and schemes for protecting the integrity of systems based on modern methods of operations research and artificial intelligence. The multicriteria optimization method proposed by the authors uses minimization of the objective function of power flow disruption and takes into account restrictions on the consistency of generator operation. The method was tested on an IEEE test circuit consisting of 118 nodes. Test calculations confirmed that the method allows for minimal power imbalance and minimal disruption of power flows. Thus, the results of the work open up new opportunities for improving the monitoring and protection of future sustainable electricity systems, including taking into account the integration of renewable energy sources, heat and gas networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信