使用深度学习方法分析外汇市场

Kalluri Ram Rohith Reddy, Kankanala Kowsick Raja, P. Subham, Puspanjali Mohapatra
{"title":"使用深度学习方法分析外汇市场","authors":"Kalluri Ram Rohith Reddy, Kankanala Kowsick Raja, P. Subham, Puspanjali Mohapatra","doi":"10.14419/exx69554","DOIUrl":null,"url":null,"abstract":"This paper compares the effectiveness of various deep learning models which includes LSTM (Long-Short Term Memory) and GRU (Gated Recurrent Unit) models. These models use three exchange currency pairs named Euro to US Dollar, British Pound to US Dollar, and Indian Rupee to Japanese Yen for the purpose of training and performance comparison. The analysis is conducted daily according to time zones. Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) performance measures are used to compare different models. According to the observations, the GRU model outperformed the LSTM model in the majority of datasets.","PeriodicalId":221716,"journal":{"name":"Journal of Advanced Computer Science & Technology","volume":" 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forex Market Analysis Using Deep Learning Approaches\",\"authors\":\"Kalluri Ram Rohith Reddy, Kankanala Kowsick Raja, P. Subham, Puspanjali Mohapatra\",\"doi\":\"10.14419/exx69554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper compares the effectiveness of various deep learning models which includes LSTM (Long-Short Term Memory) and GRU (Gated Recurrent Unit) models. These models use three exchange currency pairs named Euro to US Dollar, British Pound to US Dollar, and Indian Rupee to Japanese Yen for the purpose of training and performance comparison. The analysis is conducted daily according to time zones. Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) performance measures are used to compare different models. According to the observations, the GRU model outperformed the LSTM model in the majority of datasets.\",\"PeriodicalId\":221716,\"journal\":{\"name\":\"Journal of Advanced Computer Science & Technology\",\"volume\":\" 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Computer Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14419/exx69554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computer Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/exx69554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文比较了各种深度学习模型的有效性,其中包括 LSTM(长短期记忆)和 GRU(门控循环单元)模型。这些模型使用三种货币对(欧元兑美元、英镑兑美元和印度卢比兑日元)进行训练和性能比较。分析根据时区每天进行。平均平方误差 (MSE)、均方根误差 (RMSE) 和平均绝对误差 (MAE) 是用来比较不同模型的性能指标。根据观察结果,在大多数数据集中,GRU 模型的性能都优于 LSTM 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forex Market Analysis Using Deep Learning Approaches
This paper compares the effectiveness of various deep learning models which includes LSTM (Long-Short Term Memory) and GRU (Gated Recurrent Unit) models. These models use three exchange currency pairs named Euro to US Dollar, British Pound to US Dollar, and Indian Rupee to Japanese Yen for the purpose of training and performance comparison. The analysis is conducted daily according to time zones. Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) performance measures are used to compare different models. According to the observations, the GRU model outperformed the LSTM model in the majority of datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信