分析具有半对称公设连接的局部金属积空间形式中斜面子曼形体的里奇张量

Axioms Pub Date : 2024-07-04 DOI:10.3390/axioms13070454
Yanlin Li, Mohd Aquib, Meraj Ali Khan, Ibrahim Al-Dayel, Khalid Masood
{"title":"分析具有半对称公设连接的局部金属积空间形式中斜面子曼形体的里奇张量","authors":"Yanlin Li, Mohd Aquib, Meraj Ali Khan, Ibrahim Al-Dayel, Khalid Masood","doi":"10.3390/axioms13070454","DOIUrl":null,"url":null,"abstract":"This article explores the Ricci tensor of slant submanifolds within locally metallic product space forms equipped with a semi-symmetric metric connection (SSMC). Our investigation includes the derivation of the Chen–Ricci inequality and an in-depth analysis of its equality case. More precisely, if the mean curvature vector at a point vanishes, then the equality case of this inequality is achieved by a unit tangent vector at the point if and only if the vector belongs to the normal space. Finally, we have shown that when a point is a totally geodesic point or is totally umbilical with n=2, the equality case of this inequality holds true for all unit tangent vectors at the point, and conversely.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":" 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing the Ricci Tensor for Slant Submanifolds in Locally Metallic Product Space Forms with a Semi-Symmetric Metric Connection\",\"authors\":\"Yanlin Li, Mohd Aquib, Meraj Ali Khan, Ibrahim Al-Dayel, Khalid Masood\",\"doi\":\"10.3390/axioms13070454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article explores the Ricci tensor of slant submanifolds within locally metallic product space forms equipped with a semi-symmetric metric connection (SSMC). Our investigation includes the derivation of the Chen–Ricci inequality and an in-depth analysis of its equality case. More precisely, if the mean curvature vector at a point vanishes, then the equality case of this inequality is achieved by a unit tangent vector at the point if and only if the vector belongs to the normal space. Finally, we have shown that when a point is a totally geodesic point or is totally umbilical with n=2, the equality case of this inequality holds true for all unit tangent vectors at the point, and conversely.\",\"PeriodicalId\":502355,\"journal\":{\"name\":\"Axioms\",\"volume\":\" 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13070454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13070454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了配备半对称度量连接(SSMC)的局部金属积空间形式中斜面子曼形体的里奇张量。我们的研究包括陈-里奇不等式的推导和对其相等情况的深入分析。更确切地说,如果某点的平均曲率向量消失,那么该不等式的相等情况是由该点的单位切向量实现的,前提是且仅当该向量属于法向空间。最后,我们证明了当一个点是完全大地点或 n=2 的完全脐点时,该不等式的相等情形对该点的所有单位切向量都成立,反之亦然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing the Ricci Tensor for Slant Submanifolds in Locally Metallic Product Space Forms with a Semi-Symmetric Metric Connection
This article explores the Ricci tensor of slant submanifolds within locally metallic product space forms equipped with a semi-symmetric metric connection (SSMC). Our investigation includes the derivation of the Chen–Ricci inequality and an in-depth analysis of its equality case. More precisely, if the mean curvature vector at a point vanishes, then the equality case of this inequality is achieved by a unit tangent vector at the point if and only if the vector belongs to the normal space. Finally, we have shown that when a point is a totally geodesic point or is totally umbilical with n=2, the equality case of this inequality holds true for all unit tangent vectors at the point, and conversely.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信