测试非局部一方程湍流对流模型:太阳模型

T. A. M. Braun, F. Ahlborn, A. W. M. F. Astrophysik, Garching, Germany, Ludwig-Maximilians-Universitat Munchen, Munich, Heidelberger Institut fur Theoretische Studien, Heidelberg
{"title":"测试非局部一方程湍流对流模型:太阳模型","authors":"T. A. M. Braun, F. Ahlborn, A. W. M. F. Astrophysik, Garching, Germany, Ludwig-Maximilians-Universitat Munchen, Munich, Heidelberger Institut fur Theoretische Studien, Heidelberg","doi":"10.1051/0004-6361/202450511","DOIUrl":null,"url":null,"abstract":"Turbulent convection models treat stellar convection more physically than standard mixing-length theory by including non-local effects. We recently successfully applied the Kuhfuss version to convective cores in main sequence stars. Its usefulness for convective envelopes remains to be tested. The solar convective envelope constitutes a viable test bed for investigating the usefulness of the 1-equation Kuhfuss turbulent convection model. We used the one-dimensional stellar evolution code GARSTEC to calculate a standard solar model with the 1-equation Kuhfuss turbulent convection model, and compared it to helioseismic measurements and a solar model using standard mixing-length theory. Additionally, we investigated the influence of the additional free parameters of the convection model on the solar structure. The 1-equation Kuhfuss model reproduces the sound-speed profile and the lower boundary of the convective region less well than the mixing-length model, because the inherent non-local effects overestimate the amount of convective penetration below the Schwarzschild boundary. We trace this back to the coupling of the temperature gradient to the convective flux in the 1-equation version of the Kuhfuss theory. The temperature stratification of the solar convective envelope is not well modelled by the 1-equation Kuhfuss turbulent convection model, and the more complex 3-equation version is needed to improve the modelling of convection in the envelopes of 1D stellar evolution models.","PeriodicalId":505693,"journal":{"name":"Astronomy & Astrophysics","volume":" 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing a non-local 1-equation turbulent convection model: A solar model\",\"authors\":\"T. A. M. Braun, F. Ahlborn, A. W. M. F. Astrophysik, Garching, Germany, Ludwig-Maximilians-Universitat Munchen, Munich, Heidelberger Institut fur Theoretische Studien, Heidelberg\",\"doi\":\"10.1051/0004-6361/202450511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Turbulent convection models treat stellar convection more physically than standard mixing-length theory by including non-local effects. We recently successfully applied the Kuhfuss version to convective cores in main sequence stars. Its usefulness for convective envelopes remains to be tested. The solar convective envelope constitutes a viable test bed for investigating the usefulness of the 1-equation Kuhfuss turbulent convection model. We used the one-dimensional stellar evolution code GARSTEC to calculate a standard solar model with the 1-equation Kuhfuss turbulent convection model, and compared it to helioseismic measurements and a solar model using standard mixing-length theory. Additionally, we investigated the influence of the additional free parameters of the convection model on the solar structure. The 1-equation Kuhfuss model reproduces the sound-speed profile and the lower boundary of the convective region less well than the mixing-length model, because the inherent non-local effects overestimate the amount of convective penetration below the Schwarzschild boundary. We trace this back to the coupling of the temperature gradient to the convective flux in the 1-equation version of the Kuhfuss theory. The temperature stratification of the solar convective envelope is not well modelled by the 1-equation Kuhfuss turbulent convection model, and the more complex 3-equation version is needed to improve the modelling of convection in the envelopes of 1D stellar evolution models.\",\"PeriodicalId\":505693,\"journal\":{\"name\":\"Astronomy & Astrophysics\",\"volume\":\" 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy & Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202450511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/0004-6361/202450511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

湍流对流模型通过纳入非局部效应,比标准混合长度理论更物理地处理恒星对流。我们最近成功地将 Kuhfuss 版本应用于主序列恒星的对流核心。它对对流包层的实用性还有待检验。太阳对流包层是研究一方程库弗斯湍流对流模型有用性的一个可行的试验平台。我们使用一维恒星演化代码 GARSTEC 计算了带有一方程库弗斯湍流对流模型的标准太阳模型,并将其与日震测量结果和使用标准混合长度理论的太阳模型进行了比较。此外,我们还研究了对流模型的附加自由参数对太阳结构的影响。单方程库弗斯模型对声速剖面和对流区域下边界的再现不如混合长度模型,因为固有的非局部效应高估了施瓦兹柴尔德边界以下的对流渗透量。我们将这一现象追溯到库弗斯理论一方程版本中温度梯度与对流通量的耦合。一方程库弗斯湍流对流模型并不能很好地模拟太阳对流包层的温度分层,因此需要更复杂的三方程版本来改进一维恒星演化模型包层中的对流建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing a non-local 1-equation turbulent convection model: A solar model
Turbulent convection models treat stellar convection more physically than standard mixing-length theory by including non-local effects. We recently successfully applied the Kuhfuss version to convective cores in main sequence stars. Its usefulness for convective envelopes remains to be tested. The solar convective envelope constitutes a viable test bed for investigating the usefulness of the 1-equation Kuhfuss turbulent convection model. We used the one-dimensional stellar evolution code GARSTEC to calculate a standard solar model with the 1-equation Kuhfuss turbulent convection model, and compared it to helioseismic measurements and a solar model using standard mixing-length theory. Additionally, we investigated the influence of the additional free parameters of the convection model on the solar structure. The 1-equation Kuhfuss model reproduces the sound-speed profile and the lower boundary of the convective region less well than the mixing-length model, because the inherent non-local effects overestimate the amount of convective penetration below the Schwarzschild boundary. We trace this back to the coupling of the temperature gradient to the convective flux in the 1-equation version of the Kuhfuss theory. The temperature stratification of the solar convective envelope is not well modelled by the 1-equation Kuhfuss turbulent convection model, and the more complex 3-equation version is needed to improve the modelling of convection in the envelopes of 1D stellar evolution models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信