通过蒙特卡洛和最小二乘法综合方法修改航空摄像机的热网参数

IF 2.1 4区 物理与天体物理 Q2 OPTICS
Yue Fan, Wei Feng, Zhenxing Ren, Bingqi Liu, Dazhi Wang
{"title":"通过蒙特卡洛和最小二乘法综合方法修改航空摄像机的热网参数","authors":"Yue Fan, Wei Feng, Zhenxing Ren, Bingqi Liu, Dazhi Wang","doi":"10.3390/photonics11070641","DOIUrl":null,"url":null,"abstract":"The precise thermal control of aerial cameras is crucial for the acquisition of high-resolution imagery, and an accurate temperature prediction is essential to achieve this. This paper presents a methodology for modifying thermal network models to improve the accuracy of temperature prediction for aerial cameras. Seven types of thermal parameters are extracted from the thermal network model, and a thermally sensitive analysis identifies eleven key parameters to streamline the processing time. Departing from traditional methods that rely on steady-state data, this study conducts transient thermal tests and leverages polynomial fitting to facilitate thorough parameter modification. To ensure data reliability, the Monte-Carlo algorithm is employed to explore the parameter spaces of key parameters, analyzing temperature errors. Subsequently, the Least-Squares method is utilized to obtain optimal estimates of the key parameter values. As a result, the updated model demonstrates significantly improved accuracy in temperature predictions, achieving a reduction in the maximum absolute error between the predicted and experimental results from 22 °C to 4 °C, and a lowering of the relative error from 33.8% to 6.1%. The proposed modification method validates its effectiveness in modeling and enhancing the precision of thermal network models for aerial cameras.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modification of Thermal Network Parameters for Aerial Cameras via Integrated Monte-Carlo and Least-Squares Methods\",\"authors\":\"Yue Fan, Wei Feng, Zhenxing Ren, Bingqi Liu, Dazhi Wang\",\"doi\":\"10.3390/photonics11070641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The precise thermal control of aerial cameras is crucial for the acquisition of high-resolution imagery, and an accurate temperature prediction is essential to achieve this. This paper presents a methodology for modifying thermal network models to improve the accuracy of temperature prediction for aerial cameras. Seven types of thermal parameters are extracted from the thermal network model, and a thermally sensitive analysis identifies eleven key parameters to streamline the processing time. Departing from traditional methods that rely on steady-state data, this study conducts transient thermal tests and leverages polynomial fitting to facilitate thorough parameter modification. To ensure data reliability, the Monte-Carlo algorithm is employed to explore the parameter spaces of key parameters, analyzing temperature errors. Subsequently, the Least-Squares method is utilized to obtain optimal estimates of the key parameter values. As a result, the updated model demonstrates significantly improved accuracy in temperature predictions, achieving a reduction in the maximum absolute error between the predicted and experimental results from 22 °C to 4 °C, and a lowering of the relative error from 33.8% to 6.1%. The proposed modification method validates its effectiveness in modeling and enhancing the precision of thermal network models for aerial cameras.\",\"PeriodicalId\":20154,\"journal\":{\"name\":\"Photonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/photonics11070641\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11070641","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

航空相机的精确热控制对于获取高分辨率图像至关重要,而准确的温度预测则是实现这一目标的关键。本文介绍了一种修改热网络模型的方法,以提高航空相机温度预测的准确性。本文从热网络模型中提取了七种热参数,并通过热敏感分析确定了 11 个关键参数,从而简化了处理时间。与依赖稳态数据的传统方法不同,本研究进行了瞬态热测试,并利用多项式拟合来促进参数的彻底修改。为确保数据的可靠性,采用蒙特卡洛算法探索关键参数的参数空间,分析温度误差。随后,利用最小二乘法获得关键参数值的最佳估计值。结果,更新后的模型显著提高了温度预测的准确性,使预测结果与实验结果之间的最大绝对误差从 22 ℃ 降至 4 ℃,相对误差从 33.8% 降至 6.1%。所提出的修改方法验证了其在建模和提高航空相机热网络模型精度方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modification of Thermal Network Parameters for Aerial Cameras via Integrated Monte-Carlo and Least-Squares Methods
The precise thermal control of aerial cameras is crucial for the acquisition of high-resolution imagery, and an accurate temperature prediction is essential to achieve this. This paper presents a methodology for modifying thermal network models to improve the accuracy of temperature prediction for aerial cameras. Seven types of thermal parameters are extracted from the thermal network model, and a thermally sensitive analysis identifies eleven key parameters to streamline the processing time. Departing from traditional methods that rely on steady-state data, this study conducts transient thermal tests and leverages polynomial fitting to facilitate thorough parameter modification. To ensure data reliability, the Monte-Carlo algorithm is employed to explore the parameter spaces of key parameters, analyzing temperature errors. Subsequently, the Least-Squares method is utilized to obtain optimal estimates of the key parameter values. As a result, the updated model demonstrates significantly improved accuracy in temperature predictions, achieving a reduction in the maximum absolute error between the predicted and experimental results from 22 °C to 4 °C, and a lowering of the relative error from 33.8% to 6.1%. The proposed modification method validates its effectiveness in modeling and enhancing the precision of thermal network models for aerial cameras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photonics
Photonics Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
20.80%
发文量
817
审稿时长
8 weeks
期刊介绍: Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信