模拟喷丸冲击处理-瓣轮修整技术序列中形成的残余应力

Tri Vinh Le, V. Koltsov, D. Starodubtseva
{"title":"模拟喷丸冲击处理-瓣轮修整技术序列中形成的残余应力","authors":"Tri Vinh Le, V. Koltsov, D. Starodubtseva","doi":"10.21285/1814-3520-2024-2-202-213","DOIUrl":null,"url":null,"abstract":"The paper aims to study the stress-strain state of the surface layer in a VT95 aluminum alloy part during its shot-impact treatment in the sequence of “shot-impact treatment–flap-wheel trimming” operations. The research objects included large parts, such as panels and cladding of complex shapes used in aircraft, missile, and shipbuilding industries. Computer simulation in the Ansys Workbench 19.0 software package was used to develop a methodology for determining residual stresses. As a result of simulating the studied treatment sequence, a visual representation of the residual stress formation pattern, as well as physical values and distribution curves of residual stresses, were obtained. The distribution pattern of residual stresses after performing two types of treatment was established to be similar. The maximum value of residual stresses, obtained as a result of performing a shot-impact treatment of the part surface with a shot of 3.0 mm in diameter at a shot-impact rate of 25 m/s, reaches about 600 MPa at a depth of 1.0 mm. Following the shot-impact treatment, flap-wheel trimming is performed in the finite element simulation as a set of abrasive grains at a rate of 18.316 m/s. The removal of the 25-, 50-, and 75-μm layer from the surface of the plate during trimming contributes to the shearing of the upper part in the residual stress diagram and, as a result, to a decrease in the values of residual stresses in the shot-impact treatment–flap-wheel trimming sequence to 400 MPa. In addition, along with an increase in the thickness of the layer removed from the surface during trimming, the value of residual stresses decreases more slowly. In this case, the thickness of the removed layer causes no effect on the depth of residual compression stresses (about 0.7 mm). The developed finite element model makes it possible to predict and control the level and magnitude of residual stresses in an aluminum alloy sample at the stage of its preparation for both a shot-impact treatment operation and the combination of shotimpact treatment and flap-wheel trimming.","PeriodicalId":488940,"journal":{"name":"iPolytech Journal","volume":" 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulating residual stresses formed in the technological sequence of shot-impact treatment–flap-wheel trimming\",\"authors\":\"Tri Vinh Le, V. Koltsov, D. Starodubtseva\",\"doi\":\"10.21285/1814-3520-2024-2-202-213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper aims to study the stress-strain state of the surface layer in a VT95 aluminum alloy part during its shot-impact treatment in the sequence of “shot-impact treatment–flap-wheel trimming” operations. The research objects included large parts, such as panels and cladding of complex shapes used in aircraft, missile, and shipbuilding industries. Computer simulation in the Ansys Workbench 19.0 software package was used to develop a methodology for determining residual stresses. As a result of simulating the studied treatment sequence, a visual representation of the residual stress formation pattern, as well as physical values and distribution curves of residual stresses, were obtained. The distribution pattern of residual stresses after performing two types of treatment was established to be similar. The maximum value of residual stresses, obtained as a result of performing a shot-impact treatment of the part surface with a shot of 3.0 mm in diameter at a shot-impact rate of 25 m/s, reaches about 600 MPa at a depth of 1.0 mm. Following the shot-impact treatment, flap-wheel trimming is performed in the finite element simulation as a set of abrasive grains at a rate of 18.316 m/s. The removal of the 25-, 50-, and 75-μm layer from the surface of the plate during trimming contributes to the shearing of the upper part in the residual stress diagram and, as a result, to a decrease in the values of residual stresses in the shot-impact treatment–flap-wheel trimming sequence to 400 MPa. In addition, along with an increase in the thickness of the layer removed from the surface during trimming, the value of residual stresses decreases more slowly. In this case, the thickness of the removed layer causes no effect on the depth of residual compression stresses (about 0.7 mm). The developed finite element model makes it possible to predict and control the level and magnitude of residual stresses in an aluminum alloy sample at the stage of its preparation for both a shot-impact treatment operation and the combination of shotimpact treatment and flap-wheel trimming.\",\"PeriodicalId\":488940,\"journal\":{\"name\":\"iPolytech Journal\",\"volume\":\" 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iPolytech Journal\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.21285/1814-3520-2024-2-202-213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iPolytech Journal","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.21285/1814-3520-2024-2-202-213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在研究 VT95 铝合金零件在 "冲击处理-瓣轮修整 "作业序列中进行冲击处理时表面层的应力应变状态。研究对象包括大型零件,如飞机、导弹和造船工业中使用的形状复杂的面板和包层。Ansys Workbench 19.0 软件包中的计算机模拟用于开发确定残余应力的方法。通过模拟所研究的处理顺序,获得了残余应力形成模式的直观图,以及残余应力的物理值和分布曲线。两种处理方式后残余应力的分布模式相似。用直径为 3.0 毫米的弹丸以 25 米/秒的冲击速度对零件表面进行冲击处理后,在 1.0 毫米深度处获得的残余应力最大值约为 600 兆帕。喷丸冲击处理后,在有限元模拟中以 18.316 米/秒的速度对一组磨粒进行瓣轮修整。在修整过程中,从板材表面去除 25、50 和 75μm 的层有助于残余应力图中上部的剪切,从而使冲击处理-瓣轮修整序列中的残余应力值降至 400 兆帕。此外,随着切边过程中表面去除层厚度的增加,残余应力值的下降速度也更慢。在这种情况下,去除层的厚度对残余压缩应力的深度(约 0.7 毫米)没有影响。通过所开发的有限元模型,可以预测和控制铝合金试样在准备进行冲击处理操作以及冲击处理和瓣轮修整组合操作阶段的残余应力水平和大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulating residual stresses formed in the technological sequence of shot-impact treatment–flap-wheel trimming
The paper aims to study the stress-strain state of the surface layer in a VT95 aluminum alloy part during its shot-impact treatment in the sequence of “shot-impact treatment–flap-wheel trimming” operations. The research objects included large parts, such as panels and cladding of complex shapes used in aircraft, missile, and shipbuilding industries. Computer simulation in the Ansys Workbench 19.0 software package was used to develop a methodology for determining residual stresses. As a result of simulating the studied treatment sequence, a visual representation of the residual stress formation pattern, as well as physical values and distribution curves of residual stresses, were obtained. The distribution pattern of residual stresses after performing two types of treatment was established to be similar. The maximum value of residual stresses, obtained as a result of performing a shot-impact treatment of the part surface with a shot of 3.0 mm in diameter at a shot-impact rate of 25 m/s, reaches about 600 MPa at a depth of 1.0 mm. Following the shot-impact treatment, flap-wheel trimming is performed in the finite element simulation as a set of abrasive grains at a rate of 18.316 m/s. The removal of the 25-, 50-, and 75-μm layer from the surface of the plate during trimming contributes to the shearing of the upper part in the residual stress diagram and, as a result, to a decrease in the values of residual stresses in the shot-impact treatment–flap-wheel trimming sequence to 400 MPa. In addition, along with an increase in the thickness of the layer removed from the surface during trimming, the value of residual stresses decreases more slowly. In this case, the thickness of the removed layer causes no effect on the depth of residual compression stresses (about 0.7 mm). The developed finite element model makes it possible to predict and control the level and magnitude of residual stresses in an aluminum alloy sample at the stage of its preparation for both a shot-impact treatment operation and the combination of shotimpact treatment and flap-wheel trimming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信