Semin Ahn, Jinoh Yoo, Kyu-Wha Lee, B. D. Youn, Sung-Hoon Ahn
{"title":"用于工业机器人故障诊断的频率聚焦声音数据发生器","authors":"Semin Ahn, Jinoh Yoo, Kyu-Wha Lee, B. D. Youn, Sung-Hoon Ahn","doi":"10.1093/jcde/qwae061","DOIUrl":null,"url":null,"abstract":"\n A frequency-focused sound data generator was developed for the in-situ fault sound diagnosis of industrial robot reducers. The sound data generator, based on a conditional generative adversarial network, selects a target frequency range without relying on domain knowledge. A sound dataset of normal and faulty harmonic drive rotations of in-situ industrial robots was collected using an attachable wireless sound sensor. The generated sound data were evaluated based on the fault diagnosis accuracy of a simple classifier trained using the generated data and tested using real data. The proposed method well-defined the frequency feature clusters and produced high-quality data, exhibiting up to 16.0% higher precision score on normal and 13.0% higher accuracy on weak-fault harmonic drive compared to the conventional methods, achieving fault diagnosis accuracy of 95.6% even in situations of fault data comprising only 5% of the normal data.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":" 5","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency-Focused Sound Data Generator for Fault Diagnosis in Industrial Robots\",\"authors\":\"Semin Ahn, Jinoh Yoo, Kyu-Wha Lee, B. D. Youn, Sung-Hoon Ahn\",\"doi\":\"10.1093/jcde/qwae061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A frequency-focused sound data generator was developed for the in-situ fault sound diagnosis of industrial robot reducers. The sound data generator, based on a conditional generative adversarial network, selects a target frequency range without relying on domain knowledge. A sound dataset of normal and faulty harmonic drive rotations of in-situ industrial robots was collected using an attachable wireless sound sensor. The generated sound data were evaluated based on the fault diagnosis accuracy of a simple classifier trained using the generated data and tested using real data. The proposed method well-defined the frequency feature clusters and produced high-quality data, exhibiting up to 16.0% higher precision score on normal and 13.0% higher accuracy on weak-fault harmonic drive compared to the conventional methods, achieving fault diagnosis accuracy of 95.6% even in situations of fault data comprising only 5% of the normal data.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\" 5\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jcde/qwae061\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jcde/qwae061","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Frequency-Focused Sound Data Generator for Fault Diagnosis in Industrial Robots
A frequency-focused sound data generator was developed for the in-situ fault sound diagnosis of industrial robot reducers. The sound data generator, based on a conditional generative adversarial network, selects a target frequency range without relying on domain knowledge. A sound dataset of normal and faulty harmonic drive rotations of in-situ industrial robots was collected using an attachable wireless sound sensor. The generated sound data were evaluated based on the fault diagnosis accuracy of a simple classifier trained using the generated data and tested using real data. The proposed method well-defined the frequency feature clusters and produced high-quality data, exhibiting up to 16.0% higher precision score on normal and 13.0% higher accuracy on weak-fault harmonic drive compared to the conventional methods, achieving fault diagnosis accuracy of 95.6% even in situations of fault data comprising only 5% of the normal data.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.