含概率信息的费尔马特犹豫模糊多属性决策方法及其应用

Axioms Pub Date : 2024-07-04 DOI:10.3390/axioms13070456
Chuanyang Ruan, Xiangjing Chen, Lin Yan
{"title":"含概率信息的费尔马特犹豫模糊多属性决策方法及其应用","authors":"Chuanyang Ruan, Xiangjing Chen, Lin Yan","doi":"10.3390/axioms13070456","DOIUrl":null,"url":null,"abstract":"When information is incomplete or uncertain, Fermatean hesitant fuzzy sets (FHFSs) can provide more information to help decision-makers deal with more complex problems. Typically, determining attribute weights assumes that each attribute has a fixed influence. Introducing probability information can enable one to consider the stochastic nature of evaluation data and better quantify the importance of the attributes. To aggregate data by considering the location and importance degrees of each attribute, this paper develops a Fermatean hesitant fuzzy multi-attribute decision-making (MADM) method with probabilistic information and an ordered weighted averaging (OWA) method. The OWA method combines the concepts of weights and sorting to sort and weigh average property values based on those weights. Therefore, this novel approach assigns weights based on the decision-maker’s preferences and introduces probabilities to assess attribute importance under specific circumstances, thereby broadening the scope of information expression. Then, this paper presents four probabilistic aggregation operators under the Fermatean hesitant fuzzy environment, including the Fermatean hesitant fuzzy probabilistic ordered weighted averaging/geometric (FHFPOWA/FHFPOWG) operators and the generalized Fermatean hesitant fuzzy probabilistic ordered weighted averaging/geometric (GFHFPOWA/GFHFPOWG) operators. These new operators are designed to quantify the importance of attributes and characterize the attitudes of decision-makers using a probabilistic and weighted vector. Then, a MADM method based on these proposed operators is developed. Finally, an illustrative example of selecting the best new retail enterprise demonstrates the effectiveness and practicality of the method.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":" 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fermatean Hesitant Fuzzy Multi-Attribute Decision-Making Method with Probabilistic Information and Its Application\",\"authors\":\"Chuanyang Ruan, Xiangjing Chen, Lin Yan\",\"doi\":\"10.3390/axioms13070456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When information is incomplete or uncertain, Fermatean hesitant fuzzy sets (FHFSs) can provide more information to help decision-makers deal with more complex problems. Typically, determining attribute weights assumes that each attribute has a fixed influence. Introducing probability information can enable one to consider the stochastic nature of evaluation data and better quantify the importance of the attributes. To aggregate data by considering the location and importance degrees of each attribute, this paper develops a Fermatean hesitant fuzzy multi-attribute decision-making (MADM) method with probabilistic information and an ordered weighted averaging (OWA) method. The OWA method combines the concepts of weights and sorting to sort and weigh average property values based on those weights. Therefore, this novel approach assigns weights based on the decision-maker’s preferences and introduces probabilities to assess attribute importance under specific circumstances, thereby broadening the scope of information expression. Then, this paper presents four probabilistic aggregation operators under the Fermatean hesitant fuzzy environment, including the Fermatean hesitant fuzzy probabilistic ordered weighted averaging/geometric (FHFPOWA/FHFPOWG) operators and the generalized Fermatean hesitant fuzzy probabilistic ordered weighted averaging/geometric (GFHFPOWA/GFHFPOWG) operators. These new operators are designed to quantify the importance of attributes and characterize the attitudes of decision-makers using a probabilistic and weighted vector. Then, a MADM method based on these proposed operators is developed. Finally, an illustrative example of selecting the best new retail enterprise demonstrates the effectiveness and practicality of the method.\",\"PeriodicalId\":502355,\"journal\":{\"name\":\"Axioms\",\"volume\":\" 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13070456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13070456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当信息不完整或不确定时,费马特式犹豫模糊集(FHFS)可以提供更多信息,帮助决策者处理更复杂的问题。通常情况下,确定属性权重时会假定每个属性都有固定的影响。引入概率信息可以让我们考虑评估数据的随机性,更好地量化属性的重要性。为了通过考虑每个属性的位置和重要程度来汇总数据,本文开发了一种具有概率信息的费马特犹豫模糊多属性决策(MADM)方法和有序加权平均(OWA)方法。OWA 方法结合了权重和排序的概念,根据权重对平均属性值进行排序和权重。因此,这种新方法根据决策者的偏好分配权重,并引入概率来评估特定情况下属性的重要性,从而扩大了信息表达的范围。然后,本文提出了费马特犹豫模糊环境下的四种概率聚合算子,包括费马特犹豫模糊概率有序加权平均/几何(FHFPOWA/FHFPOWG)算子和广义费马特犹豫模糊概率有序加权平均/几何(GFHFPOWA/GFHFPOWG)算子。这些新算子旨在量化属性的重要性,并使用概率加权向量表征决策者的态度。然后,基于这些建议的算子开发了一种 MADM 方法。最后,一个选择最佳新零售企业的示例证明了该方法的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fermatean Hesitant Fuzzy Multi-Attribute Decision-Making Method with Probabilistic Information and Its Application
When information is incomplete or uncertain, Fermatean hesitant fuzzy sets (FHFSs) can provide more information to help decision-makers deal with more complex problems. Typically, determining attribute weights assumes that each attribute has a fixed influence. Introducing probability information can enable one to consider the stochastic nature of evaluation data and better quantify the importance of the attributes. To aggregate data by considering the location and importance degrees of each attribute, this paper develops a Fermatean hesitant fuzzy multi-attribute decision-making (MADM) method with probabilistic information and an ordered weighted averaging (OWA) method. The OWA method combines the concepts of weights and sorting to sort and weigh average property values based on those weights. Therefore, this novel approach assigns weights based on the decision-maker’s preferences and introduces probabilities to assess attribute importance under specific circumstances, thereby broadening the scope of information expression. Then, this paper presents four probabilistic aggregation operators under the Fermatean hesitant fuzzy environment, including the Fermatean hesitant fuzzy probabilistic ordered weighted averaging/geometric (FHFPOWA/FHFPOWG) operators and the generalized Fermatean hesitant fuzzy probabilistic ordered weighted averaging/geometric (GFHFPOWA/GFHFPOWG) operators. These new operators are designed to quantify the importance of attributes and characterize the attitudes of decision-makers using a probabilistic and weighted vector. Then, a MADM method based on these proposed operators is developed. Finally, an illustrative example of selecting the best new retail enterprise demonstrates the effectiveness and practicality of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信