{"title":"基于多种智能算法的节水控制系统","authors":"Fengnian Liu, Xiang Yu, Junya Tang","doi":"10.1007/s43684-024-00068-8","DOIUrl":null,"url":null,"abstract":"<div><p>Water conservation has become a global problem as the population increases. In many densely populated cities in China, leaks from century-old pipe works have been widespread. However, entirely eradicating the issues involves replacing all water networks, which is costly and time-consuming. This paper proposed an AI-enabled water-saving control system with three control modes: time division control, flow regulation, and critical point control according to actual flow. Firstly, based on the current leaking situation of water supply networks in China and the capability level of China’s water management, a water-saving technology integrating PID control and a series of deep learning algorithms was proposed. Secondly, a multi-jet control valve was designed to control pressure and reduce water distribution network cavitation. This technology has been successfully applied in industrial settings in China and has achieved gratifying water-saving results.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00068-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Water-saving control system based on multiple intelligent algorithms\",\"authors\":\"Fengnian Liu, Xiang Yu, Junya Tang\",\"doi\":\"10.1007/s43684-024-00068-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water conservation has become a global problem as the population increases. In many densely populated cities in China, leaks from century-old pipe works have been widespread. However, entirely eradicating the issues involves replacing all water networks, which is costly and time-consuming. This paper proposed an AI-enabled water-saving control system with three control modes: time division control, flow regulation, and critical point control according to actual flow. Firstly, based on the current leaking situation of water supply networks in China and the capability level of China’s water management, a water-saving technology integrating PID control and a series of deep learning algorithms was proposed. Secondly, a multi-jet control valve was designed to control pressure and reduce water distribution network cavitation. This technology has been successfully applied in industrial settings in China and has achieved gratifying water-saving results.</p></div>\",\"PeriodicalId\":71187,\"journal\":{\"name\":\"自主智能系统(英文)\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43684-024-00068-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自主智能系统(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43684-024-00068-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-024-00068-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Water-saving control system based on multiple intelligent algorithms
Water conservation has become a global problem as the population increases. In many densely populated cities in China, leaks from century-old pipe works have been widespread. However, entirely eradicating the issues involves replacing all water networks, which is costly and time-consuming. This paper proposed an AI-enabled water-saving control system with three control modes: time division control, flow regulation, and critical point control according to actual flow. Firstly, based on the current leaking situation of water supply networks in China and the capability level of China’s water management, a water-saving technology integrating PID control and a series of deep learning algorithms was proposed. Secondly, a multi-jet control valve was designed to control pressure and reduce water distribution network cavitation. This technology has been successfully applied in industrial settings in China and has achieved gratifying water-saving results.