{"title":"使用四维几何模型连续表示加工过程--时空中的切刀-工件啮合分析和加工表面估计","authors":"Tong Zhang, M. Onosato, Fumiki Tanaka","doi":"10.20965/ijat.2024.p0463","DOIUrl":null,"url":null,"abstract":"The study proposes strategies for conducting cutter-workpiece engagement (CWE) analysis and representation based on 4-dimensional (4D) geometric models. To achieve the CWE condition, two 4D models representing the workpiece and the machinable volume of the tool are introduced for Boolean subtraction and CWE calculation. However, performing set operations and mesh transformations on high-accuracy 4D mesh models can be complex and time-consuming. Therefore, a simplified CWE analysis process between the time-invariant workpiece-occupied region (WOR) and the tool-occupied region (TOR) has been implemented to illustrate the validity of the set operation algorithm. The results demonstrate the effectiveness of the proposed 4D Set operation algorithm and its application in CWE analysis to a certain extent.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous Representation of Machining Processes Using 4-Dimensional Geometric Models –Cutter-Workpiece Engagement Analysis and Processing Surface Estimation in Spatio-Temporal Space—\",\"authors\":\"Tong Zhang, M. Onosato, Fumiki Tanaka\",\"doi\":\"10.20965/ijat.2024.p0463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study proposes strategies for conducting cutter-workpiece engagement (CWE) analysis and representation based on 4-dimensional (4D) geometric models. To achieve the CWE condition, two 4D models representing the workpiece and the machinable volume of the tool are introduced for Boolean subtraction and CWE calculation. However, performing set operations and mesh transformations on high-accuracy 4D mesh models can be complex and time-consuming. Therefore, a simplified CWE analysis process between the time-invariant workpiece-occupied region (WOR) and the tool-occupied region (TOR) has been implemented to illustrate the validity of the set operation algorithm. The results demonstrate the effectiveness of the proposed 4D Set operation algorithm and its application in CWE analysis to a certain extent.\",\"PeriodicalId\":43716,\"journal\":{\"name\":\"International Journal of Automation Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automation Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/ijat.2024.p0463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2024.p0463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Continuous Representation of Machining Processes Using 4-Dimensional Geometric Models –Cutter-Workpiece Engagement Analysis and Processing Surface Estimation in Spatio-Temporal Space—
The study proposes strategies for conducting cutter-workpiece engagement (CWE) analysis and representation based on 4-dimensional (4D) geometric models. To achieve the CWE condition, two 4D models representing the workpiece and the machinable volume of the tool are introduced for Boolean subtraction and CWE calculation. However, performing set operations and mesh transformations on high-accuracy 4D mesh models can be complex and time-consuming. Therefore, a simplified CWE analysis process between the time-invariant workpiece-occupied region (WOR) and the tool-occupied region (TOR) has been implemented to illustrate the validity of the set operation algorithm. The results demonstrate the effectiveness of the proposed 4D Set operation algorithm and its application in CWE analysis to a certain extent.