物理学中的随机微分方程

Q4 Mathematics
Dr Nand Kumar
{"title":"物理学中的随机微分方程","authors":"Dr Nand Kumar","doi":"10.52783/cana.v31.937","DOIUrl":null,"url":null,"abstract":"Stochastic Differential Equations (SDEs) are powerful mathematical tools used to model systems subject to random fluctuations. In physics, SDEs find widespread applications ranging from statistical mechanics to quantum field theory. This paper provides an in-depth exploration of the theoretical foundations of SDEs in physics, their applications, and their implications in understanding complex physical phenomena. We delve into the mathematical framework of SDEs, their numerical solutions, and their role in modeling various physical processes. Furthermore, we present case studies illustrating the practical relevance of SDEs in different branches of physics.","PeriodicalId":40036,"journal":{"name":"Communications on Applied Nonlinear Analysis","volume":" 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Differential Equations in Physics\",\"authors\":\"Dr Nand Kumar\",\"doi\":\"10.52783/cana.v31.937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic Differential Equations (SDEs) are powerful mathematical tools used to model systems subject to random fluctuations. In physics, SDEs find widespread applications ranging from statistical mechanics to quantum field theory. This paper provides an in-depth exploration of the theoretical foundations of SDEs in physics, their applications, and their implications in understanding complex physical phenomena. We delve into the mathematical framework of SDEs, their numerical solutions, and their role in modeling various physical processes. Furthermore, we present case studies illustrating the practical relevance of SDEs in different branches of physics.\",\"PeriodicalId\":40036,\"journal\":{\"name\":\"Communications on Applied Nonlinear Analysis\",\"volume\":\" 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Applied Nonlinear Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52783/cana.v31.937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/cana.v31.937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

随机微分方程(SDEs)是用来模拟受随机波动影响的系统的强大数学工具。在物理学中,SDE 得到了从统计力学到量子场论的广泛应用。本文深入探讨了 SDE 在物理学中的理论基础、应用及其对理解复杂物理现象的影响。我们深入探讨了 SDE 的数学框架、其数值解及其在模拟各种物理过程中的作用。此外,我们还介绍了案例研究,说明了 SDE 在不同物理学分支中的实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Differential Equations in Physics
Stochastic Differential Equations (SDEs) are powerful mathematical tools used to model systems subject to random fluctuations. In physics, SDEs find widespread applications ranging from statistical mechanics to quantum field theory. This paper provides an in-depth exploration of the theoretical foundations of SDEs in physics, their applications, and their implications in understanding complex physical phenomena. We delve into the mathematical framework of SDEs, their numerical solutions, and their role in modeling various physical processes. Furthermore, we present case studies illustrating the practical relevance of SDEs in different branches of physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信