用于生物序列数据特征工程的扩展德布鲁因图

Mert Onur Çakıroğlu, H. Kurban, Parichit Sharma, Oguzhan Kulekci, Elham Khorasani Buxton, Maryam Raeeszadeh-Sarmazdeh, Mehmet Dalkilic
{"title":"用于生物序列数据特征工程的扩展德布鲁因图","authors":"Mert Onur Çakıroğlu, H. Kurban, Parichit Sharma, Oguzhan Kulekci, Elham Khorasani Buxton, Maryam Raeeszadeh-Sarmazdeh, Mehmet Dalkilic","doi":"10.1088/2632-2153/ad5fde","DOIUrl":null,"url":null,"abstract":"\n In this study, we introduce a novel de Bruijn graph (dBG) based framework for feature engineering in biological sequential data such as proteins. This framework simplifies feature extraction by dynamically generating high-quality, interpretable features for traditional AI (TAI) algorithms. Our framework accounts for amino acid substitutions by efficiently adjusting the edge weights in the dBG using a secondary trie structure. We extract motifs from the dBG by traversing the heavy edges, and then incorporate alignment algorithms like BLAST and Smith-Waterman to generate features for TAI algorithms. Empirical validation on TIMP (tissue inhibitors of matrix metalloproteinase) data demonstrates significant accuracy improvements over a robust baseline, state-of-the-art (SOTA) PLM models, and those from the popular GLAM2 tool. Furthermore, our framework successfully identified Glycine and Arginine-rich (GAR) motifs with high coverage, highlighting it's potential in general pattern discovery. The software code is accessible at: https://github.com/parichit/TIMP_Classification","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":" 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An extended de Bruijn graph for feature engineering over biological sequential data\",\"authors\":\"Mert Onur Çakıroğlu, H. Kurban, Parichit Sharma, Oguzhan Kulekci, Elham Khorasani Buxton, Maryam Raeeszadeh-Sarmazdeh, Mehmet Dalkilic\",\"doi\":\"10.1088/2632-2153/ad5fde\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, we introduce a novel de Bruijn graph (dBG) based framework for feature engineering in biological sequential data such as proteins. This framework simplifies feature extraction by dynamically generating high-quality, interpretable features for traditional AI (TAI) algorithms. Our framework accounts for amino acid substitutions by efficiently adjusting the edge weights in the dBG using a secondary trie structure. We extract motifs from the dBG by traversing the heavy edges, and then incorporate alignment algorithms like BLAST and Smith-Waterman to generate features for TAI algorithms. Empirical validation on TIMP (tissue inhibitors of matrix metalloproteinase) data demonstrates significant accuracy improvements over a robust baseline, state-of-the-art (SOTA) PLM models, and those from the popular GLAM2 tool. Furthermore, our framework successfully identified Glycine and Arginine-rich (GAR) motifs with high coverage, highlighting it's potential in general pattern discovery. The software code is accessible at: https://github.com/parichit/TIMP_Classification\",\"PeriodicalId\":503691,\"journal\":{\"name\":\"Machine Learning: Science and Technology\",\"volume\":\" 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning: Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad5fde\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad5fde","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们为蛋白质等生物序列数据的特征工程引入了一种基于德布鲁因图(dBG)的新型框架。该框架可为传统人工智能(TAI)算法动态生成高质量、可解释的特征,从而简化特征提取。我们的框架通过使用二级三角形结构有效调整 dBG 中的边缘权重来考虑氨基酸的替换。我们通过遍历重边从 dBG 中提取主题,然后结合 BLAST 和 Smith-Waterman 等比对算法为 TAI 算法生成特征。在 TIMP(基质金属蛋白酶组织抑制剂)数据上进行的经验验证表明,与稳健基线、最先进(SOTA)PLM 模型和流行的 GLAM2 工具相比,我们的准确性有了显著提高。此外,我们的框架还成功识别了富含甘氨酸和精氨酸(GAR)的图案,覆盖率很高,这凸显了它在一般模式发现方面的潜力。软件代码请访问:https://github.com/parichit/TIMP_Classification
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An extended de Bruijn graph for feature engineering over biological sequential data
In this study, we introduce a novel de Bruijn graph (dBG) based framework for feature engineering in biological sequential data such as proteins. This framework simplifies feature extraction by dynamically generating high-quality, interpretable features for traditional AI (TAI) algorithms. Our framework accounts for amino acid substitutions by efficiently adjusting the edge weights in the dBG using a secondary trie structure. We extract motifs from the dBG by traversing the heavy edges, and then incorporate alignment algorithms like BLAST and Smith-Waterman to generate features for TAI algorithms. Empirical validation on TIMP (tissue inhibitors of matrix metalloproteinase) data demonstrates significant accuracy improvements over a robust baseline, state-of-the-art (SOTA) PLM models, and those from the popular GLAM2 tool. Furthermore, our framework successfully identified Glycine and Arginine-rich (GAR) motifs with high coverage, highlighting it's potential in general pattern discovery. The software code is accessible at: https://github.com/parichit/TIMP_Classification
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信