具有不连续系数和点源的奇异扰动问题缺陷校正方法的后验误差分析

Aditya Kaushik, Shivani Jain
{"title":"具有不连续系数和点源的奇异扰动问题缺陷校正方法的后验误差分析","authors":"Aditya Kaushik, Shivani Jain","doi":"10.1115/1.4065900","DOIUrl":null,"url":null,"abstract":"\n The paper presents a defect correction method to solve singularly perturbed problems with discontinuous coefficient and point source. The method combines an inexpensive, lower-order stable, upwind difference scheme and a higher-order, less stable central difference scheme over a layer-adapted mesh. The mesh is designed so that most mesh points remain in the regions with rapid transitions. A posteriori error analysis is presented. The proposed numerical method is analysed for consistency, stability and convergence. The error estimates of the proposed numerical method satisfy parameter-uniform second-order convergence on the layer-adapted grid. The convergence obtained is optimal because it is free from any logarithmic term. The numerical analysis confirms the theoretical error analysis.","PeriodicalId":506262,"journal":{"name":"Journal of Computational and Nonlinear Dynamics","volume":" 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Posteriori Error Analysis of Defect Correction Method for Singular Perturbation Problems with Discontinuous Coefficient and Point Source\",\"authors\":\"Aditya Kaushik, Shivani Jain\",\"doi\":\"10.1115/1.4065900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The paper presents a defect correction method to solve singularly perturbed problems with discontinuous coefficient and point source. The method combines an inexpensive, lower-order stable, upwind difference scheme and a higher-order, less stable central difference scheme over a layer-adapted mesh. The mesh is designed so that most mesh points remain in the regions with rapid transitions. A posteriori error analysis is presented. The proposed numerical method is analysed for consistency, stability and convergence. The error estimates of the proposed numerical method satisfy parameter-uniform second-order convergence on the layer-adapted grid. The convergence obtained is optimal because it is free from any logarithmic term. The numerical analysis confirms the theoretical error analysis.\",\"PeriodicalId\":506262,\"journal\":{\"name\":\"Journal of Computational and Nonlinear Dynamics\",\"volume\":\" 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Nonlinear Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Nonlinear Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种缺陷修正方法,用于解决具有不连续系数和点源的奇异扰动问题。该方法在层适应网格上结合了一种廉价、低阶稳定的上风差分方案和一种高阶、不太稳定的中心差分方案。网格的设计使大部分网格点保持在快速转换区域。提出了后验误差分析。对提出的数值方法进行了一致性、稳定性和收敛性分析。所提数值方法的误差估计值在层适应网格上满足参数均匀的二阶收敛。由于不含任何对数项,因此获得的收敛性是最佳的。数值分析证实了理论误差分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Posteriori Error Analysis of Defect Correction Method for Singular Perturbation Problems with Discontinuous Coefficient and Point Source
The paper presents a defect correction method to solve singularly perturbed problems with discontinuous coefficient and point source. The method combines an inexpensive, lower-order stable, upwind difference scheme and a higher-order, less stable central difference scheme over a layer-adapted mesh. The mesh is designed so that most mesh points remain in the regions with rapid transitions. A posteriori error analysis is presented. The proposed numerical method is analysed for consistency, stability and convergence. The error estimates of the proposed numerical method satisfy parameter-uniform second-order convergence on the layer-adapted grid. The convergence obtained is optimal because it is free from any logarithmic term. The numerical analysis confirms the theoretical error analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信