B. V. Van Dam, V. Helfer, David Kaiser, Eva Sinemus, Joanna Staneva, Martin Zimmer
{"title":"为基于蓝碳的 CDR 建立公平、可靠和实用的核查框架","authors":"B. V. Van Dam, V. Helfer, David Kaiser, Eva Sinemus, Joanna Staneva, Martin Zimmer","doi":"10.1088/1748-9326/ad5fa3","DOIUrl":null,"url":null,"abstract":"\n While the (re-)establishment of Blue Carbon Ecosystems (BCE) is seen as an important tool to mitigate climate change, the credibility of such nature-based solutions has been marred by recent revelations ranging from weak accounting to malpractice. In light of this, there is a clear need to develop monitoring, reporting and verification (MRV) systems towards the reliable, practical, and accurate accounting of additional and durable carbon dioxide removal (CDR). We propose the development of a Blue Carbon Ecosystem Digital Twin (BCE-DT) as a practical solution, integrating real-time data and models into What-If Scenarios of CDR aimed at the quantification of CDR additionality and durability. Critically, such a solution would be amenable to projects across a broad range in spatial scale and ecosytem type. In parallel, we propose the creation of an independent and not-for-profit Standards Development Organization (SDO) for the management of this Digital Twin and oversight of the certification process based on MRV. Considering the interwoven nature of the scientific and policy/legal needs we raise, an improved dialogue and collaboration between the scientific and policy communities is clearly needed. We argue that this BCE-DT, along with its oversight and implementation by a SDO, would fit this niche and support the fair and accurate implementation of MRV critically needed for BCE-based CDR to proceed.","PeriodicalId":507917,"journal":{"name":"Environmental Research Letters","volume":" 47","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards a fair, reliable, and practical verification framework for Blue Carbon-based CDR\",\"authors\":\"B. V. Van Dam, V. Helfer, David Kaiser, Eva Sinemus, Joanna Staneva, Martin Zimmer\",\"doi\":\"10.1088/1748-9326/ad5fa3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n While the (re-)establishment of Blue Carbon Ecosystems (BCE) is seen as an important tool to mitigate climate change, the credibility of such nature-based solutions has been marred by recent revelations ranging from weak accounting to malpractice. In light of this, there is a clear need to develop monitoring, reporting and verification (MRV) systems towards the reliable, practical, and accurate accounting of additional and durable carbon dioxide removal (CDR). We propose the development of a Blue Carbon Ecosystem Digital Twin (BCE-DT) as a practical solution, integrating real-time data and models into What-If Scenarios of CDR aimed at the quantification of CDR additionality and durability. Critically, such a solution would be amenable to projects across a broad range in spatial scale and ecosytem type. In parallel, we propose the creation of an independent and not-for-profit Standards Development Organization (SDO) for the management of this Digital Twin and oversight of the certification process based on MRV. Considering the interwoven nature of the scientific and policy/legal needs we raise, an improved dialogue and collaboration between the scientific and policy communities is clearly needed. We argue that this BCE-DT, along with its oversight and implementation by a SDO, would fit this niche and support the fair and accurate implementation of MRV critically needed for BCE-based CDR to proceed.\",\"PeriodicalId\":507917,\"journal\":{\"name\":\"Environmental Research Letters\",\"volume\":\" 47\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-9326/ad5fa3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-9326/ad5fa3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards a fair, reliable, and practical verification framework for Blue Carbon-based CDR
While the (re-)establishment of Blue Carbon Ecosystems (BCE) is seen as an important tool to mitigate climate change, the credibility of such nature-based solutions has been marred by recent revelations ranging from weak accounting to malpractice. In light of this, there is a clear need to develop monitoring, reporting and verification (MRV) systems towards the reliable, practical, and accurate accounting of additional and durable carbon dioxide removal (CDR). We propose the development of a Blue Carbon Ecosystem Digital Twin (BCE-DT) as a practical solution, integrating real-time data and models into What-If Scenarios of CDR aimed at the quantification of CDR additionality and durability. Critically, such a solution would be amenable to projects across a broad range in spatial scale and ecosytem type. In parallel, we propose the creation of an independent and not-for-profit Standards Development Organization (SDO) for the management of this Digital Twin and oversight of the certification process based on MRV. Considering the interwoven nature of the scientific and policy/legal needs we raise, an improved dialogue and collaboration between the scientific and policy communities is clearly needed. We argue that this BCE-DT, along with its oversight and implementation by a SDO, would fit this niche and support the fair and accurate implementation of MRV critically needed for BCE-based CDR to proceed.