神经诊断的未来:早期干预的深度学习

Rajkumar Govindarajan, Thirunadana Sikamani K, Angati Kalyan Kumar, Komal Kumar N
{"title":"神经诊断的未来:早期干预的深度学习","authors":"Rajkumar Govindarajan, Thirunadana Sikamani K, Angati Kalyan Kumar, Komal Kumar N","doi":"10.53759/7669/jmc202404075","DOIUrl":null,"url":null,"abstract":"This study presents an innovative deep learning framework for improved early detection of a debilitating neurodegenerative condition marked by cognitive decline and memory impairment. Timely diagnosis is crucial for effective interventions and improved patient outcomes. Our framework integrates diverse data sources, including structural and functional neuroimaging (MRI and PET) alongside clinical information, to enhance detection precision. Convolutional Neural Networks (CNNs) analyze structural MRI scans, extracting subtle changes in brain structure indicative of early disease progression. Functional insights are gleaned from PET scans, contributing to increased sensitivity. Additionally, longitudinal data is incorporated through Recurrent Neural Networks (RNNs) to capture the disease's temporal evolution. Training on a diverse dataset utilizes transfer learning, optimizing performance even with limited labeled data. Rigorous validation consistently demonstrates the model's effectiveness, achieving a 92% accuracy rate.","PeriodicalId":516151,"journal":{"name":"Journal of Machine and Computing","volume":" 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Future of Neurodiagnosis: Deep Learning for Earlier Intervention\",\"authors\":\"Rajkumar Govindarajan, Thirunadana Sikamani K, Angati Kalyan Kumar, Komal Kumar N\",\"doi\":\"10.53759/7669/jmc202404075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents an innovative deep learning framework for improved early detection of a debilitating neurodegenerative condition marked by cognitive decline and memory impairment. Timely diagnosis is crucial for effective interventions and improved patient outcomes. Our framework integrates diverse data sources, including structural and functional neuroimaging (MRI and PET) alongside clinical information, to enhance detection precision. Convolutional Neural Networks (CNNs) analyze structural MRI scans, extracting subtle changes in brain structure indicative of early disease progression. Functional insights are gleaned from PET scans, contributing to increased sensitivity. Additionally, longitudinal data is incorporated through Recurrent Neural Networks (RNNs) to capture the disease's temporal evolution. Training on a diverse dataset utilizes transfer learning, optimizing performance even with limited labeled data. Rigorous validation consistently demonstrates the model's effectiveness, achieving a 92% accuracy rate.\",\"PeriodicalId\":516151,\"journal\":{\"name\":\"Journal of Machine and Computing\",\"volume\":\" 24\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machine and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53759/7669/jmc202404075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53759/7669/jmc202404075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种创新的深度学习框架,用于改进对以认知能力下降和记忆力减退为特征的衰弱性神经退行性疾病的早期检测。及时诊断对于有效干预和改善患者预后至关重要。我们的框架整合了各种数据源,包括结构和功能神经成像(核磁共振成像和正电子发射计算机断层扫描)以及临床信息,以提高检测精度。卷积神经网络(CNN)分析核磁共振成像的结构扫描,提取大脑结构的微妙变化,以指示疾病的早期进展。从正电子发射计算机断层扫描(PET)中获取功能性见解,有助于提高灵敏度。此外,还通过递归神经网络(RNN)纳入了纵向数据,以捕捉疾病的时间演变。利用迁移学习对不同数据集进行训练,即使标注数据有限也能优化性能。严格的验证持续证明了该模型的有效性,准确率达到 92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Future of Neurodiagnosis: Deep Learning for Earlier Intervention
This study presents an innovative deep learning framework for improved early detection of a debilitating neurodegenerative condition marked by cognitive decline and memory impairment. Timely diagnosis is crucial for effective interventions and improved patient outcomes. Our framework integrates diverse data sources, including structural and functional neuroimaging (MRI and PET) alongside clinical information, to enhance detection precision. Convolutional Neural Networks (CNNs) analyze structural MRI scans, extracting subtle changes in brain structure indicative of early disease progression. Functional insights are gleaned from PET scans, contributing to increased sensitivity. Additionally, longitudinal data is incorporated through Recurrent Neural Networks (RNNs) to capture the disease's temporal evolution. Training on a diverse dataset utilizes transfer learning, optimizing performance even with limited labeled data. Rigorous validation consistently demonstrates the model's effectiveness, achieving a 92% accuracy rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信