用于高维数据分类的引导式量子压缩

Vasilis Belis, Patrick Odagiu, Michele Grossi, Florentin Reiter, Günther Dissertori, Sofia Vallecorsa
{"title":"用于高维数据分类的引导式量子压缩","authors":"Vasilis Belis, Patrick Odagiu, Michele Grossi, Florentin Reiter, Günther Dissertori, Sofia Vallecorsa","doi":"10.1088/2632-2153/ad5fdd","DOIUrl":null,"url":null,"abstract":"\n Quantum machine learning provides a fundamentally different approach to analyzing data. However, many interesting datasets are too complex for currently available quantum computers. Present quantum machine learning applications usually diminish this complexity by reducing the dimensionality of the data, e.g., via auto-encoders, before passing it through the quantum models. Here, we design a classical-quantum paradigm that unifies the dimensionality reduction task with a quantum classification model into a single architecture: the guided quantum compression model. We exemplify how this architecture outperforms conventional quantum machine learning approaches on a challenging binary classification problem: identifying the Higgs boson in proton-proton collisions at the LHC. Furthermore, the guided quantum compression model shows better performance compared to the deep learning benchmark when using solely the kinematic variables in our dataset.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":" 40","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guided quantum compression for high dimensional data classification\",\"authors\":\"Vasilis Belis, Patrick Odagiu, Michele Grossi, Florentin Reiter, Günther Dissertori, Sofia Vallecorsa\",\"doi\":\"10.1088/2632-2153/ad5fdd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Quantum machine learning provides a fundamentally different approach to analyzing data. However, many interesting datasets are too complex for currently available quantum computers. Present quantum machine learning applications usually diminish this complexity by reducing the dimensionality of the data, e.g., via auto-encoders, before passing it through the quantum models. Here, we design a classical-quantum paradigm that unifies the dimensionality reduction task with a quantum classification model into a single architecture: the guided quantum compression model. We exemplify how this architecture outperforms conventional quantum machine learning approaches on a challenging binary classification problem: identifying the Higgs boson in proton-proton collisions at the LHC. Furthermore, the guided quantum compression model shows better performance compared to the deep learning benchmark when using solely the kinematic variables in our dataset.\",\"PeriodicalId\":503691,\"journal\":{\"name\":\"Machine Learning: Science and Technology\",\"volume\":\" 40\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning: Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad5fdd\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad5fdd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子机器学习提供了一种根本不同的数据分析方法。然而,许多有趣的数据集对于目前可用的量子计算机来说过于复杂。目前的量子机器学习应用通常通过降低数据的维度(例如通过自动编码器)来减少这种复杂性,然后再将其传递给量子模型。在这里,我们设计了一种经典量子范式,将降维任务与量子分类模型统一到一个架构中:引导量子压缩模型。我们举例说明了这种架构如何在一个具有挑战性的二元分类问题上优于传统的量子机器学习方法:在大型强子对撞机的质子-质子对撞中识别希格斯玻色子。此外,与深度学习基准相比,当只使用我们数据集中的运动学变量时,引导量子压缩模型显示出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Guided quantum compression for high dimensional data classification
Quantum machine learning provides a fundamentally different approach to analyzing data. However, many interesting datasets are too complex for currently available quantum computers. Present quantum machine learning applications usually diminish this complexity by reducing the dimensionality of the data, e.g., via auto-encoders, before passing it through the quantum models. Here, we design a classical-quantum paradigm that unifies the dimensionality reduction task with a quantum classification model into a single architecture: the guided quantum compression model. We exemplify how this architecture outperforms conventional quantum machine learning approaches on a challenging binary classification problem: identifying the Higgs boson in proton-proton collisions at the LHC. Furthermore, the guided quantum compression model shows better performance compared to the deep learning benchmark when using solely the kinematic variables in our dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信