用 GHZ 悖论验证量子网络

Huan Ye, Xue Yang, Ming‐Xing Luo
{"title":"用 GHZ 悖论验证量子网络","authors":"Huan Ye, Xue Yang, Ming‐Xing Luo","doi":"10.1088/1572-9494/ad5f83","DOIUrl":null,"url":null,"abstract":"\n The GHZ paradox shows that it is possible to create a multipartite state involving three or more particles in which the measurement outcomes of the particles are correlated in a way that cannot be explained by classical physics. We extend it to witness quantum networks. We first extend the GHZ paradox to simultaneously verify GHZ state and EPR states on triangle networks. We then extend the GHZ paradox to witness the entanglement of chain networks consisting of multiple GHZ states. All the present results are robust against to the noise.","PeriodicalId":508917,"journal":{"name":"Communications in Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verify quantum networks with GHZ paradox\",\"authors\":\"Huan Ye, Xue Yang, Ming‐Xing Luo\",\"doi\":\"10.1088/1572-9494/ad5f83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The GHZ paradox shows that it is possible to create a multipartite state involving three or more particles in which the measurement outcomes of the particles are correlated in a way that cannot be explained by classical physics. We extend it to witness quantum networks. We first extend the GHZ paradox to simultaneously verify GHZ state and EPR states on triangle networks. We then extend the GHZ paradox to witness the entanglement of chain networks consisting of multiple GHZ states. All the present results are robust against to the noise.\",\"PeriodicalId\":508917,\"journal\":{\"name\":\"Communications in Theoretical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Theoretical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1572-9494/ad5f83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad5f83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

GHZ 悖论表明,有可能创造出一种涉及三个或更多粒子的多粒子状态,其中粒子的测量结果以一种经典物理学无法解释的方式相互关联。我们将其扩展到见证量子网络。我们首先扩展 GHZ 悖论,在三角形网络上同时验证 GHZ 状态和 EPR 状态。然后,我们将 GHZ 悖论扩展到见证由多个 GHZ 状态组成的链式网络的纠缠。所有这些结果对噪声都是稳健的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verify quantum networks with GHZ paradox
The GHZ paradox shows that it is possible to create a multipartite state involving three or more particles in which the measurement outcomes of the particles are correlated in a way that cannot be explained by classical physics. We extend it to witness quantum networks. We first extend the GHZ paradox to simultaneously verify GHZ state and EPR states on triangle networks. We then extend the GHZ paradox to witness the entanglement of chain networks consisting of multiple GHZ states. All the present results are robust against to the noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信