基于主成分分析的多目标机会约束模糊区间线性规划综合模型,用于优化不确定条件下的农业水资源管理

Water Supply Pub Date : 2024-07-05 DOI:10.2166/ws.2024.156
Ruoyu Yin, Lei Jin, Haiyan Fu, Yurui Fan, Xi Zhang, Li Wang
{"title":"基于主成分分析的多目标机会约束模糊区间线性规划综合模型,用于优化不确定条件下的农业水资源管理","authors":"Ruoyu Yin, Lei Jin, Haiyan Fu, Yurui Fan, Xi Zhang, Li Wang","doi":"10.2166/ws.2024.156","DOIUrl":null,"url":null,"abstract":"\n \n This study addresses the pivotal challenge of water resource allocation in urban environments by introducing a novel approach – a multi-objective chance-constrained fuzzy interval linear programming model integrated with principal component analysis (PCA). This innovative model aims to alleviate subjectivity in urban water management processes, particularly in adjusting water demands across various sectors. The proposed model incorporates correlation analysis to identify dimensionality-reducing factors of multitarget components, determining the proportion of each target component relative to the total components. Fuzzy sets are applied to irrigation water resource allocation quantity, segmented into six levels of fuzzy membership to analyze the stochasticity of water supply. Results demonstrate the model's efficacy, revealing that variations in risk probabilities impact water supply, necessitating positive water management strategies to enhance agricultural efficiency and negative strategies to mitigate the risk of inadequate water supply. Key findings emphasize the significance of agricultural water availability and the structure of irrigation water use in optimal resource allocation. Importantly, the study showcases the enhanced precision achieved through the proposed multi-objective chance-constrained fuzzy interval linear programming with PCA, thereby refining the optimization outcomes for water management under multifaceted objectives.","PeriodicalId":509977,"journal":{"name":"Water Supply","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated multi-objective chance-constrained fuzzy interval linear programming model with principal component analysis for optimizing agricultural water resource management under uncertainties\",\"authors\":\"Ruoyu Yin, Lei Jin, Haiyan Fu, Yurui Fan, Xi Zhang, Li Wang\",\"doi\":\"10.2166/ws.2024.156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n This study addresses the pivotal challenge of water resource allocation in urban environments by introducing a novel approach – a multi-objective chance-constrained fuzzy interval linear programming model integrated with principal component analysis (PCA). This innovative model aims to alleviate subjectivity in urban water management processes, particularly in adjusting water demands across various sectors. The proposed model incorporates correlation analysis to identify dimensionality-reducing factors of multitarget components, determining the proportion of each target component relative to the total components. Fuzzy sets are applied to irrigation water resource allocation quantity, segmented into six levels of fuzzy membership to analyze the stochasticity of water supply. Results demonstrate the model's efficacy, revealing that variations in risk probabilities impact water supply, necessitating positive water management strategies to enhance agricultural efficiency and negative strategies to mitigate the risk of inadequate water supply. Key findings emphasize the significance of agricultural water availability and the structure of irrigation water use in optimal resource allocation. Importantly, the study showcases the enhanced precision achieved through the proposed multi-objective chance-constrained fuzzy interval linear programming with PCA, thereby refining the optimization outcomes for water management under multifaceted objectives.\",\"PeriodicalId\":509977,\"journal\":{\"name\":\"Water Supply\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Supply\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/ws.2024.156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Supply","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2024.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过引入一种新方法--一种与主成分分析(PCA)相结合的多目标机会约束模糊区间线性规划模型--来解决城市环境中水资源分配所面临的关键挑战。这一创新模型旨在减轻城市水资源管理过程中的主观性,尤其是在调整各部门的用水需求时。建议的模型结合了相关性分析,以确定多目标成分的降维因素,确定每个目标成分相对于总成分的比例。模糊集应用于灌溉水资源分配数量,分为六个模糊成员等级,以分析供水的随机性。结果证明了该模型的有效性,揭示了风险概率的变化对供水的影响,因此需要采取积极的水资源管理策略来提高农业效率,同时采取消极策略来降低供水不足的风险。主要研究结果强调了农业供水量和灌溉用水结构在资源优化配置中的重要性。重要的是,该研究展示了利用 PCA 的多目标机会约束模糊区间线性规划所实现的更高精度,从而完善了多目标下的水资源管理优化结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated multi-objective chance-constrained fuzzy interval linear programming model with principal component analysis for optimizing agricultural water resource management under uncertainties
This study addresses the pivotal challenge of water resource allocation in urban environments by introducing a novel approach – a multi-objective chance-constrained fuzzy interval linear programming model integrated with principal component analysis (PCA). This innovative model aims to alleviate subjectivity in urban water management processes, particularly in adjusting water demands across various sectors. The proposed model incorporates correlation analysis to identify dimensionality-reducing factors of multitarget components, determining the proportion of each target component relative to the total components. Fuzzy sets are applied to irrigation water resource allocation quantity, segmented into six levels of fuzzy membership to analyze the stochasticity of water supply. Results demonstrate the model's efficacy, revealing that variations in risk probabilities impact water supply, necessitating positive water management strategies to enhance agricultural efficiency and negative strategies to mitigate the risk of inadequate water supply. Key findings emphasize the significance of agricultural water availability and the structure of irrigation water use in optimal resource allocation. Importantly, the study showcases the enhanced precision achieved through the proposed multi-objective chance-constrained fuzzy interval linear programming with PCA, thereby refining the optimization outcomes for water management under multifaceted objectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信