Asmae Hbika, Amine Elbouzidi, Mohamed Taibi, Safae Ouahabi, E. Loukili, A. Bouyanzer, Meryem Idrissi Yahyaoui, A. Asehraou, Naoufal El Hachlafi, A. M. Salamatullah, Mohammed Bourhia, Samir Ibenmoussa, M. Addi, Elkhadir Gharibi
{"title":"从苦艾蒿中分离出 Arborescin,并采用体外和硅学方法研究其抗氧化和抗菌潜力","authors":"Asmae Hbika, Amine Elbouzidi, Mohamed Taibi, Safae Ouahabi, E. Loukili, A. Bouyanzer, Meryem Idrissi Yahyaoui, A. Asehraou, Naoufal El Hachlafi, A. M. Salamatullah, Mohammed Bourhia, Samir Ibenmoussa, M. Addi, Elkhadir Gharibi","doi":"10.3390/separations11070209","DOIUrl":null,"url":null,"abstract":"This study focused on developing an innovative, straightforward, and economical method utilizing a mixture of readily available solvents to extract arborescin (C2OH2OO8) crystals from Artemisia absinthium L. (A. absinthium). The structural elucidation and characterization were conducted using a suite of techniques including IR spectroscopy, CNHSO elemental analysis, scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDS), and mass spectroscopy (MS). Density functional theory (DFT) calculations were employed to determine the molecular properties. Antioxidant activity was measured using the DPPH radical scavenging assay and the β-carotene bleaching test. Antimicrobial efficacy was assessed against four bacterial strains and three fungal strains. The molecular docking approach was employed to predict the probable binding patterns and affinities of arborescin with specific target biomolecules. Employing an array of analytical techniques, examination of the isolated crystal from A. absinthium. led to its comprehensive structural elucidation. IR spectroscopy revealed the presence of distinctive functional groups, including a carbonyl group within the γ-lactone and an epoxy group. CNHSO elemental analysis verified that the crystal contained only carbon, hydrogen, and oxygen, a finding corroborated by SEM-EDS analysis, consistent with the molecular structure of arborescin. Additionally, mass spectrometry confirmed the identity of the compound as arborescin, with a molecular ion with a mass m/z = 248. Quantum-Chemical Descriptors revealed that arborescin is resistant to elementary decomposition under standard conditions. Although arborescin demonstrates a relatively low antioxidant capacity, with an IC50 of 5.04 ± 0.12 mg/mL in the DPPH assay, its antioxidant activity in the β-carotene bleaching test was found to be 3.64%. Remarkably, arborescin effectively inhibits the growth of Staphylococcus aureus and Listeria innocua at low concentrations (MIC = 166 µg/mL). Additionally, it exhibits significant antifungal activity against Candida glabrata, with a minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of 83 µg/mL and 166 µg/mL, respectively. In this study, arborescin exhibited a robust docking score of −8.1 kcal/mol, indicating a higher affinity compared to ciprofloxacin. This suggests that arborescin has significant potential as a potent antibacterial agent.","PeriodicalId":21833,"journal":{"name":"Separations","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation of Arborescin from Artemisia absinthium L. and Study of Its Antioxidant and Antimicrobial Potential by Use of In Vitro and In Silico Approaches\",\"authors\":\"Asmae Hbika, Amine Elbouzidi, Mohamed Taibi, Safae Ouahabi, E. Loukili, A. Bouyanzer, Meryem Idrissi Yahyaoui, A. Asehraou, Naoufal El Hachlafi, A. M. Salamatullah, Mohammed Bourhia, Samir Ibenmoussa, M. Addi, Elkhadir Gharibi\",\"doi\":\"10.3390/separations11070209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focused on developing an innovative, straightforward, and economical method utilizing a mixture of readily available solvents to extract arborescin (C2OH2OO8) crystals from Artemisia absinthium L. (A. absinthium). The structural elucidation and characterization were conducted using a suite of techniques including IR spectroscopy, CNHSO elemental analysis, scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDS), and mass spectroscopy (MS). Density functional theory (DFT) calculations were employed to determine the molecular properties. Antioxidant activity was measured using the DPPH radical scavenging assay and the β-carotene bleaching test. Antimicrobial efficacy was assessed against four bacterial strains and three fungal strains. The molecular docking approach was employed to predict the probable binding patterns and affinities of arborescin with specific target biomolecules. Employing an array of analytical techniques, examination of the isolated crystal from A. absinthium. led to its comprehensive structural elucidation. IR spectroscopy revealed the presence of distinctive functional groups, including a carbonyl group within the γ-lactone and an epoxy group. CNHSO elemental analysis verified that the crystal contained only carbon, hydrogen, and oxygen, a finding corroborated by SEM-EDS analysis, consistent with the molecular structure of arborescin. Additionally, mass spectrometry confirmed the identity of the compound as arborescin, with a molecular ion with a mass m/z = 248. Quantum-Chemical Descriptors revealed that arborescin is resistant to elementary decomposition under standard conditions. Although arborescin demonstrates a relatively low antioxidant capacity, with an IC50 of 5.04 ± 0.12 mg/mL in the DPPH assay, its antioxidant activity in the β-carotene bleaching test was found to be 3.64%. Remarkably, arborescin effectively inhibits the growth of Staphylococcus aureus and Listeria innocua at low concentrations (MIC = 166 µg/mL). Additionally, it exhibits significant antifungal activity against Candida glabrata, with a minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of 83 µg/mL and 166 µg/mL, respectively. In this study, arborescin exhibited a robust docking score of −8.1 kcal/mol, indicating a higher affinity compared to ciprofloxacin. This suggests that arborescin has significant potential as a potent antibacterial agent.\",\"PeriodicalId\":21833,\"journal\":{\"name\":\"Separations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/separations11070209\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations11070209","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Isolation of Arborescin from Artemisia absinthium L. and Study of Its Antioxidant and Antimicrobial Potential by Use of In Vitro and In Silico Approaches
This study focused on developing an innovative, straightforward, and economical method utilizing a mixture of readily available solvents to extract arborescin (C2OH2OO8) crystals from Artemisia absinthium L. (A. absinthium). The structural elucidation and characterization were conducted using a suite of techniques including IR spectroscopy, CNHSO elemental analysis, scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDS), and mass spectroscopy (MS). Density functional theory (DFT) calculations were employed to determine the molecular properties. Antioxidant activity was measured using the DPPH radical scavenging assay and the β-carotene bleaching test. Antimicrobial efficacy was assessed against four bacterial strains and three fungal strains. The molecular docking approach was employed to predict the probable binding patterns and affinities of arborescin with specific target biomolecules. Employing an array of analytical techniques, examination of the isolated crystal from A. absinthium. led to its comprehensive structural elucidation. IR spectroscopy revealed the presence of distinctive functional groups, including a carbonyl group within the γ-lactone and an epoxy group. CNHSO elemental analysis verified that the crystal contained only carbon, hydrogen, and oxygen, a finding corroborated by SEM-EDS analysis, consistent with the molecular structure of arborescin. Additionally, mass spectrometry confirmed the identity of the compound as arborescin, with a molecular ion with a mass m/z = 248. Quantum-Chemical Descriptors revealed that arborescin is resistant to elementary decomposition under standard conditions. Although arborescin demonstrates a relatively low antioxidant capacity, with an IC50 of 5.04 ± 0.12 mg/mL in the DPPH assay, its antioxidant activity in the β-carotene bleaching test was found to be 3.64%. Remarkably, arborescin effectively inhibits the growth of Staphylococcus aureus and Listeria innocua at low concentrations (MIC = 166 µg/mL). Additionally, it exhibits significant antifungal activity against Candida glabrata, with a minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of 83 µg/mL and 166 µg/mL, respectively. In this study, arborescin exhibited a robust docking score of −8.1 kcal/mol, indicating a higher affinity compared to ciprofloxacin. This suggests that arborescin has significant potential as a potent antibacterial agent.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization