分析随时间变化系数的非线性薛定谔方程:稳定性和衰变特性

Q4 Mathematics
Dr. Eric Howard, Dr Nand Kumar
{"title":"分析随时间变化系数的非线性薛定谔方程:稳定性和衰变特性","authors":"Dr. Eric Howard, Dr Nand Kumar","doi":"10.52783/cana.v31.934","DOIUrl":null,"url":null,"abstract":"This study investigates the stability and decay properties of solutions to nonlinear Schrödinger equations (NLSEs) with time-dependent coefficients. Employing a blend of analytical and numerical methods, we delve into how temporal variations in coefficients influence the dynamics of wave functions. Our analysis reveals that time-dependent coefficients significantly affect the stability and decay rates of solutions, uncovering conditions that lead to either enhanced stability or accelerated decay. The findings highlight the critical role of coefficient temporality in dictating the behavior of NLSE solutions. These insights not only advance our theoretical understanding of NLSEs but also bear implications for practical applications in fields modeled by these equations. Our research opens avenues for exploiting time-dependent behaviors in designing systems with desired dynamical properties.","PeriodicalId":40036,"journal":{"name":"Communications on Applied Nonlinear Analysis","volume":" 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Nonlinear Schrödinger Equations with Time-Dependent Coefficients: Stability and Decay Properties\",\"authors\":\"Dr. Eric Howard, Dr Nand Kumar\",\"doi\":\"10.52783/cana.v31.934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the stability and decay properties of solutions to nonlinear Schrödinger equations (NLSEs) with time-dependent coefficients. Employing a blend of analytical and numerical methods, we delve into how temporal variations in coefficients influence the dynamics of wave functions. Our analysis reveals that time-dependent coefficients significantly affect the stability and decay rates of solutions, uncovering conditions that lead to either enhanced stability or accelerated decay. The findings highlight the critical role of coefficient temporality in dictating the behavior of NLSE solutions. These insights not only advance our theoretical understanding of NLSEs but also bear implications for practical applications in fields modeled by these equations. Our research opens avenues for exploiting time-dependent behaviors in designing systems with desired dynamical properties.\",\"PeriodicalId\":40036,\"journal\":{\"name\":\"Communications on Applied Nonlinear Analysis\",\"volume\":\" 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Applied Nonlinear Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52783/cana.v31.934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/cana.v31.934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了系数随时间变化的非线性薛定谔方程(NLSE)解的稳定性和衰变特性。通过分析和数值方法的结合,我们深入研究了系数的时间变化如何影响波函数的动态。我们的分析表明,随时间变化的系数会显著影响解的稳定性和衰减率,并揭示出导致稳定性增强或加速衰减的条件。这些发现凸显了系数的时间性在决定 NLSE 解的行为中的关键作用。这些见解不仅推进了我们对 NLSE 的理论理解,还对这些方程建模领域的实际应用产生了影响。我们的研究为利用随时间变化的行为设计具有所需动态特性的系统开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Nonlinear Schrödinger Equations with Time-Dependent Coefficients: Stability and Decay Properties
This study investigates the stability and decay properties of solutions to nonlinear Schrödinger equations (NLSEs) with time-dependent coefficients. Employing a blend of analytical and numerical methods, we delve into how temporal variations in coefficients influence the dynamics of wave functions. Our analysis reveals that time-dependent coefficients significantly affect the stability and decay rates of solutions, uncovering conditions that lead to either enhanced stability or accelerated decay. The findings highlight the critical role of coefficient temporality in dictating the behavior of NLSE solutions. These insights not only advance our theoretical understanding of NLSEs but also bear implications for practical applications in fields modeled by these equations. Our research opens avenues for exploiting time-dependent behaviors in designing systems with desired dynamical properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信