先导孔和工件材料硬度对使用无线夹具系统进行螺纹铣削的影响

IF 0.9 Q4 AUTOMATION & CONTROL SYSTEMS
S. Matsui, Nobutoshi Ozaki, T. Hirogaki, E. Aoyama, Ryo Matsuda
{"title":"先导孔和工件材料硬度对使用无线夹具系统进行螺纹铣削的影响","authors":"S. Matsui, Nobutoshi Ozaki, T. Hirogaki, E. Aoyama, Ryo Matsuda","doi":"10.20965/ijat.2024.p0472","DOIUrl":null,"url":null,"abstract":"This study investigated the effects of simultaneously machining pilot holes and threads, as well as the accuracy of thread machining after pilot hole drilling. In addition, the thread machining of S50C and SKD61, which are work materials with different hardness, was also examined. Furthermore, a smart machining method for thread milling using helical interpolation was developed by monitoring cutting data using a wireless holder. The results show that the proposed monitoring method is effective for improving the accuracy of thread machining using helical interpolation motion of the threading tool. Moreover, this study discussed the differences in results due to the presence or absence of pilot holes. Finally, the influence of the hardness of the work material on the results was analyzed.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Pilot Hole and Work Material Hardness on Thread Milling with a Wireless Holder System\",\"authors\":\"S. Matsui, Nobutoshi Ozaki, T. Hirogaki, E. Aoyama, Ryo Matsuda\",\"doi\":\"10.20965/ijat.2024.p0472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated the effects of simultaneously machining pilot holes and threads, as well as the accuracy of thread machining after pilot hole drilling. In addition, the thread machining of S50C and SKD61, which are work materials with different hardness, was also examined. Furthermore, a smart machining method for thread milling using helical interpolation was developed by monitoring cutting data using a wireless holder. The results show that the proposed monitoring method is effective for improving the accuracy of thread machining using helical interpolation motion of the threading tool. Moreover, this study discussed the differences in results due to the presence or absence of pilot holes. Finally, the influence of the hardness of the work material on the results was analyzed.\",\"PeriodicalId\":43716,\"journal\":{\"name\":\"International Journal of Automation Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automation Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/ijat.2024.p0472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2024.p0472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了同时加工导向孔和螺纹的效果,以及导向孔钻孔后螺纹加工的精度。此外,还研究了不同硬度的工件材料 S50C 和 SKD61 的螺纹加工。此外,通过使用无线夹具监测切削数据,开发了一种使用螺旋插补的螺纹铣削智能加工方法。结果表明,所提出的监测方法能有效提高使用螺纹刀具螺旋插补运动进行螺纹加工的精度。此外,本研究还讨论了因是否存在导向孔而导致的结果差异。最后,还分析了工件材料硬度对结果的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Pilot Hole and Work Material Hardness on Thread Milling with a Wireless Holder System
This study investigated the effects of simultaneously machining pilot holes and threads, as well as the accuracy of thread machining after pilot hole drilling. In addition, the thread machining of S50C and SKD61, which are work materials with different hardness, was also examined. Furthermore, a smart machining method for thread milling using helical interpolation was developed by monitoring cutting data using a wireless holder. The results show that the proposed monitoring method is effective for improving the accuracy of thread machining using helical interpolation motion of the threading tool. Moreover, this study discussed the differences in results due to the presence or absence of pilot holes. Finally, the influence of the hardness of the work material on the results was analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Automation Technology
International Journal of Automation Technology AUTOMATION & CONTROL SYSTEMS-
CiteScore
2.10
自引率
36.40%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信