{"title":"饮酒者语音识别智能系统:集合堆叠机器学习方法","authors":"Panduranga Vital Terlapu","doi":"10.1007/s40745-024-00559-8","DOIUrl":null,"url":null,"abstract":"<div><p>Alcohol's dehydrating effects can cause vocal cords to dry out, potentially causing temporary voice changes and increasing the risk of vocal strain or damage. Short-term changes in pitch, volume, and alcohol consumption can cause voice clarity, which typically returns to normal after the effects of alcohol have subsided. Data science improves voice recognition by analyzing large volumes of voice data, training machine learning (ML) models, extracting meaningful features, and using deep learning and natural language processing techniques. The research paper proposes a novel approach for identifying and classifying individuals as drinkers or non-drinkers based on their voice patterns. We collect voice data from both drinkers and non-drinkers. The study utilizes an ensemble ML technique known as stacking to combine the predictive power of multiple models, including Naive Bayes, K-NN(Nearest Neighbors), Decision (DTS) Trees, and Support (SVM) Vector Machine. Different metrics, like AUC, CA, F1 score, Recall, and precision, are implemented to evaluate the performance of each model. The stacking ensemble model stands out with the highest AUC of 0.9890, showing its excellent capability to distinguish between individuals who drink and those who don't. The SVM model also performs exceptionally well, with an AUC of 0.9861. The study shows the efficacy of the ensemble ML approach for identifying voice-based drinkers, offering significant insights for creating intelligent systems to detect alcohol-related voice issues accurately. This research advanced ensemble Stacking ML techniques in alcohol use disorder detection and opened possibilities for developing real-world applications in healthcare and behavioral analysis.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"12 4","pages":"1157 - 1187"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drinkers Voice Recognition Intelligent System: An Ensemble Stacking Machine Learning Approach\",\"authors\":\"Panduranga Vital Terlapu\",\"doi\":\"10.1007/s40745-024-00559-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Alcohol's dehydrating effects can cause vocal cords to dry out, potentially causing temporary voice changes and increasing the risk of vocal strain or damage. Short-term changes in pitch, volume, and alcohol consumption can cause voice clarity, which typically returns to normal after the effects of alcohol have subsided. Data science improves voice recognition by analyzing large volumes of voice data, training machine learning (ML) models, extracting meaningful features, and using deep learning and natural language processing techniques. The research paper proposes a novel approach for identifying and classifying individuals as drinkers or non-drinkers based on their voice patterns. We collect voice data from both drinkers and non-drinkers. The study utilizes an ensemble ML technique known as stacking to combine the predictive power of multiple models, including Naive Bayes, K-NN(Nearest Neighbors), Decision (DTS) Trees, and Support (SVM) Vector Machine. Different metrics, like AUC, CA, F1 score, Recall, and precision, are implemented to evaluate the performance of each model. The stacking ensemble model stands out with the highest AUC of 0.9890, showing its excellent capability to distinguish between individuals who drink and those who don't. The SVM model also performs exceptionally well, with an AUC of 0.9861. The study shows the efficacy of the ensemble ML approach for identifying voice-based drinkers, offering significant insights for creating intelligent systems to detect alcohol-related voice issues accurately. This research advanced ensemble Stacking ML techniques in alcohol use disorder detection and opened possibilities for developing real-world applications in healthcare and behavioral analysis.</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":\"12 4\",\"pages\":\"1157 - 1187\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-024-00559-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-024-00559-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
Alcohol's dehydrating effects can cause vocal cords to dry out, potentially causing temporary voice changes and increasing the risk of vocal strain or damage. Short-term changes in pitch, volume, and alcohol consumption can cause voice clarity, which typically returns to normal after the effects of alcohol have subsided. Data science improves voice recognition by analyzing large volumes of voice data, training machine learning (ML) models, extracting meaningful features, and using deep learning and natural language processing techniques. The research paper proposes a novel approach for identifying and classifying individuals as drinkers or non-drinkers based on their voice patterns. We collect voice data from both drinkers and non-drinkers. The study utilizes an ensemble ML technique known as stacking to combine the predictive power of multiple models, including Naive Bayes, K-NN(Nearest Neighbors), Decision (DTS) Trees, and Support (SVM) Vector Machine. Different metrics, like AUC, CA, F1 score, Recall, and precision, are implemented to evaluate the performance of each model. The stacking ensemble model stands out with the highest AUC of 0.9890, showing its excellent capability to distinguish between individuals who drink and those who don't. The SVM model also performs exceptionally well, with an AUC of 0.9861. The study shows the efficacy of the ensemble ML approach for identifying voice-based drinkers, offering significant insights for creating intelligent systems to detect alcohol-related voice issues accurately. This research advanced ensemble Stacking ML techniques in alcohol use disorder detection and opened possibilities for developing real-world applications in healthcare and behavioral analysis.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.