与正算子相关的近似空间的投影张量积

Q4 Mathematics
M. Dmytryshyn, L. Dmytryshyn
{"title":"与正算子相关的近似空间的投影张量积","authors":"M. Dmytryshyn, L. Dmytryshyn","doi":"10.15421/242403","DOIUrl":null,"url":null,"abstract":"In this paper the projective tensor products of approximation spaces associated with positive operators in Banach spaces are characterized. We show that the tensor products of approximation spaces can be considered as the interpolation spaces generated by $K$-method of real interpolation. The inequalities that provide a sharp estimates of best approximations by analytic vectors of positive operators on projective tensor products are established. Application to spectral approximations of the regular elliptic operators on projective tensor products of Lebesgue spaces is shown.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":" 38","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Projective tensor products of approximation spaces associated with positive operators\",\"authors\":\"M. Dmytryshyn, L. Dmytryshyn\",\"doi\":\"10.15421/242403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the projective tensor products of approximation spaces associated with positive operators in Banach spaces are characterized. We show that the tensor products of approximation spaces can be considered as the interpolation spaces generated by $K$-method of real interpolation. The inequalities that provide a sharp estimates of best approximations by analytic vectors of positive operators on projective tensor products are established. Application to spectral approximations of the regular elliptic operators on projective tensor products of Lebesgue spaces is shown.\",\"PeriodicalId\":52827,\"journal\":{\"name\":\"Researches in Mathematics\",\"volume\":\" 38\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Researches in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15421/242403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/242403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了巴拿赫空间中与正算子相关的近似空间的射影张量积。我们证明,近似空间的张量积可视为由实数插值的 $K$ 方法生成的插值空间。我们建立了不等式,这些不等式提供了对投影张量积上正算子的解析向量的最佳近似的尖锐估计。该不等式适用于 Lebesgue 空间射影张量积上正椭圆算子的谱近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projective tensor products of approximation spaces associated with positive operators
In this paper the projective tensor products of approximation spaces associated with positive operators in Banach spaces are characterized. We show that the tensor products of approximation spaces can be considered as the interpolation spaces generated by $K$-method of real interpolation. The inequalities that provide a sharp estimates of best approximations by analytic vectors of positive operators on projective tensor products are established. Application to spectral approximations of the regular elliptic operators on projective tensor products of Lebesgue spaces is shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
8
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信