关于中心上有限维的泊松 (2-3)- 算法

Q4 Mathematics
P. Minaiev, O. Pypka, I. Shyshenko
{"title":"关于中心上有限维的泊松 (2-3)- 算法","authors":"P. Minaiev, O. Pypka, I. Shyshenko","doi":"10.15421/242411","DOIUrl":null,"url":null,"abstract":"One of the classic results of group theory is the so-called Schur theorem. It states that if the central factor-group $G/\\zeta(G)$ of a group $G$ is finite, then its derived subgroup $[G,G]$ is also finite. This result has numerous generalizations and modifications in group theory. At the same time, similar investigations were conducted in other algebraic structures, namely in modules, linear groups, topological groups, $n$-groups, associative algebras, Lie algebras, Lie $n$-algebras, Lie rings, Leibniz algebras. In 2021, L.A. Kurdachenko, O.O. Pypka and I.Ya. Subbotin proved an analogue of Schur theorem for Poisson algebras: if the center of the Poisson algebra $P$ has finite codimension, then $P$ includes an ideal $K$ of finite dimension such that $P/K$ is abelian. In this paper, we continue similar studies for another algebraic structure. An analogue of Schur theorem for Poisson (2-3)-algebras is proved.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":" July","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Poisson (2-3)-algebras which are finite-dimensional over the center\",\"authors\":\"P. Minaiev, O. Pypka, I. Shyshenko\",\"doi\":\"10.15421/242411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the classic results of group theory is the so-called Schur theorem. It states that if the central factor-group $G/\\\\zeta(G)$ of a group $G$ is finite, then its derived subgroup $[G,G]$ is also finite. This result has numerous generalizations and modifications in group theory. At the same time, similar investigations were conducted in other algebraic structures, namely in modules, linear groups, topological groups, $n$-groups, associative algebras, Lie algebras, Lie $n$-algebras, Lie rings, Leibniz algebras. In 2021, L.A. Kurdachenko, O.O. Pypka and I.Ya. Subbotin proved an analogue of Schur theorem for Poisson algebras: if the center of the Poisson algebra $P$ has finite codimension, then $P$ includes an ideal $K$ of finite dimension such that $P/K$ is abelian. In this paper, we continue similar studies for another algebraic structure. An analogue of Schur theorem for Poisson (2-3)-algebras is proved.\",\"PeriodicalId\":52827,\"journal\":{\"name\":\"Researches in Mathematics\",\"volume\":\" July\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Researches in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15421/242411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/242411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

群论的经典结果之一是所谓的舒尔定理。它指出,如果一个群 $G$ 的中心因子群 $G/\zeta(G)$ 是有限的,那么它的派生子群 $[G,G]$ 也是有限的。这一结果在群论中得到了大量的推广和修正。与此同时,在其他代数结构中,即在模组、线性群、拓扑群、$n$群、关联代数、李代数、李$n$代数、李环、莱布尼兹代数中,也进行了类似的研究。2021 年,L.A. Kurdachenko、O.O. Pypka 和 I.Ya.苏博廷证明了泊松代数的舒尔定理:如果泊松代数 $P$ 的中心具有有限的编码维数,那么 $P$ 包括一个有限维数的理想 $K$,这样 $P/K$ 就是无边的。在本文中,我们将继续对另一种代数结构进行类似的研究。本文证明了泊松 (2-3)- 代数的舒尔定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Poisson (2-3)-algebras which are finite-dimensional over the center
One of the classic results of group theory is the so-called Schur theorem. It states that if the central factor-group $G/\zeta(G)$ of a group $G$ is finite, then its derived subgroup $[G,G]$ is also finite. This result has numerous generalizations and modifications in group theory. At the same time, similar investigations were conducted in other algebraic structures, namely in modules, linear groups, topological groups, $n$-groups, associative algebras, Lie algebras, Lie $n$-algebras, Lie rings, Leibniz algebras. In 2021, L.A. Kurdachenko, O.O. Pypka and I.Ya. Subbotin proved an analogue of Schur theorem for Poisson algebras: if the center of the Poisson algebra $P$ has finite codimension, then $P$ includes an ideal $K$ of finite dimension such that $P/K$ is abelian. In this paper, we continue similar studies for another algebraic structure. An analogue of Schur theorem for Poisson (2-3)-algebras is proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
8
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信