使用 VGG11 对锥形束 CT 图像中的缺血性脑卒中侧支循环进行自动分类:一种深度学习方法

Nur Hasanah Ali, Abdul Rahim Abdullah, N. Saad, A. Muda, Ervina Efzan Mhd Noor
{"title":"使用 VGG11 对锥形束 CT 图像中的缺血性脑卒中侧支循环进行自动分类:一种深度学习方法","authors":"Nur Hasanah Ali, Abdul Rahim Abdullah, N. Saad, A. Muda, Ervina Efzan Mhd Noor","doi":"10.3390/biomedinformatics4030091","DOIUrl":null,"url":null,"abstract":"Background: Ischemic stroke poses significant challenges in diagnosis and treatment, necessitating efficient and accurate methods for assessing collateral circulation, a critical determinant of patient prognosis. Manual classification of collateral circulation in ischemic stroke using traditional imaging techniques is labor-intensive and prone to subjectivity. This study presented the automated classification of collateral circulation patterns in cone-beam CT (CBCT) images, utilizing the VGG11 architecture. Methods: The study utilized a dataset of CBCT images from ischemic stroke patients, accurately labeled with their respective collateral circulation status. To ensure uniformity and comparability, image normalization was executed during the preprocessing phase to standardize pixel values to a consistent scale or range. Then, the VGG11 model is trained using an augmented dataset and classifies collateral circulation patterns. Results: Performance evaluation of the proposed approach demonstrates promising results, with the model achieving an accuracy of 58.32%, a sensitivity of 75.50%, a specificity of 44.10%, a precision of 52.70%, and an F1 score of 62.10% in classifying collateral circulation patterns. Conclusions: This approach automates classification, potentially reducing diagnostic delays and improving patient outcomes. It also lays the groundwork for future research in using deep learning for better stroke diagnosis and management. This study is a significant advancement toward developing practical tools to assist doctors in making informed decisions for ischemic stroke patients.","PeriodicalId":72394,"journal":{"name":"BioMedInformatics","volume":" 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Classification of Collateral Circulation for Ischemic Stroke in Cone-Beam CT Images Using VGG11: A Deep Learning Approach\",\"authors\":\"Nur Hasanah Ali, Abdul Rahim Abdullah, N. Saad, A. Muda, Ervina Efzan Mhd Noor\",\"doi\":\"10.3390/biomedinformatics4030091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Ischemic stroke poses significant challenges in diagnosis and treatment, necessitating efficient and accurate methods for assessing collateral circulation, a critical determinant of patient prognosis. Manual classification of collateral circulation in ischemic stroke using traditional imaging techniques is labor-intensive and prone to subjectivity. This study presented the automated classification of collateral circulation patterns in cone-beam CT (CBCT) images, utilizing the VGG11 architecture. Methods: The study utilized a dataset of CBCT images from ischemic stroke patients, accurately labeled with their respective collateral circulation status. To ensure uniformity and comparability, image normalization was executed during the preprocessing phase to standardize pixel values to a consistent scale or range. Then, the VGG11 model is trained using an augmented dataset and classifies collateral circulation patterns. Results: Performance evaluation of the proposed approach demonstrates promising results, with the model achieving an accuracy of 58.32%, a sensitivity of 75.50%, a specificity of 44.10%, a precision of 52.70%, and an F1 score of 62.10% in classifying collateral circulation patterns. Conclusions: This approach automates classification, potentially reducing diagnostic delays and improving patient outcomes. It also lays the groundwork for future research in using deep learning for better stroke diagnosis and management. This study is a significant advancement toward developing practical tools to assist doctors in making informed decisions for ischemic stroke patients.\",\"PeriodicalId\":72394,\"journal\":{\"name\":\"BioMedInformatics\",\"volume\":\" 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioMedInformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biomedinformatics4030091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedInformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biomedinformatics4030091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:缺血性脑卒中给诊断和治疗带来了巨大挑战,需要高效、准确的方法来评估侧支循环,这是决定患者预后的关键因素。使用传统成像技术对缺血性脑卒中的侧支循环进行人工分类不仅耗费大量人力,而且容易受到主观因素的影响。本研究利用 VGG11 架构对锥束 CT(CBCT)图像中的侧支循环模式进行了自动分类。方法:研究利用缺血性中风患者的 CBCT 图像数据集,准确标注了各自的侧支循环状态。为确保统一性和可比性,在预处理阶段对图像进行了归一化处理,将像素值标准化为一致的比例或范围。然后,使用增强数据集对 VGG11 模型进行训练,并对侧支循环模式进行分类。结果在对侧支循环模式进行分类时,该模型的准确率为 58.32%,灵敏度为 75.50%,特异度为 44.10%,精确度为 52.70%,F1 分数为 62.10%。结论:该方法实现了自动分类,有可能减少诊断延误并改善患者预后。它还为未来利用深度学习更好地诊断和管理中风的研究奠定了基础。这项研究在开发实用工具以协助医生为缺血性中风患者做出明智决策方面取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Classification of Collateral Circulation for Ischemic Stroke in Cone-Beam CT Images Using VGG11: A Deep Learning Approach
Background: Ischemic stroke poses significant challenges in diagnosis and treatment, necessitating efficient and accurate methods for assessing collateral circulation, a critical determinant of patient prognosis. Manual classification of collateral circulation in ischemic stroke using traditional imaging techniques is labor-intensive and prone to subjectivity. This study presented the automated classification of collateral circulation patterns in cone-beam CT (CBCT) images, utilizing the VGG11 architecture. Methods: The study utilized a dataset of CBCT images from ischemic stroke patients, accurately labeled with their respective collateral circulation status. To ensure uniformity and comparability, image normalization was executed during the preprocessing phase to standardize pixel values to a consistent scale or range. Then, the VGG11 model is trained using an augmented dataset and classifies collateral circulation patterns. Results: Performance evaluation of the proposed approach demonstrates promising results, with the model achieving an accuracy of 58.32%, a sensitivity of 75.50%, a specificity of 44.10%, a precision of 52.70%, and an F1 score of 62.10% in classifying collateral circulation patterns. Conclusions: This approach automates classification, potentially reducing diagnostic delays and improving patient outcomes. It also lays the groundwork for future research in using deep learning for better stroke diagnosis and management. This study is a significant advancement toward developing practical tools to assist doctors in making informed decisions for ischemic stroke patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信