Mingxuan Fan, J. Yao, Zuoquan Zhao, Xianzhong Zhang, Jie Lu
{"title":"99mTc 标记的 WL12 肽作为肿瘤 PD-L1 靶向 SPECT 成像剂的应用:试剂盒配方、临床前评价和配体影响研究","authors":"Mingxuan Fan, J. Yao, Zuoquan Zhao, Xianzhong Zhang, Jie Lu","doi":"10.3390/ph17070906","DOIUrl":null,"url":null,"abstract":"With the development of PD-1/PD-L1 immune checkpoint inhibitor therapy, the ability to monitor PD-L1 expression in the tumor microenvironment is important for guiding therapy. This study was performed to develop a novel radiotracer with optimal pharmacokinetic properties to reflect PD-L1 expression in vivo via single-photon emission computed tomography (SPECT) imaging. [99mTc]Tc-HYNIC-WL12-tricine/M (M = TPPTS, PDA, ISONIC, 4-PSA) complexes with high radiochemical purity (>97%) and suitable molar activity (from 100.5 GBq/μmol to 300 GBq/μmol) were prepared through a kit preparation process. All 99mTc-labeled HYNIC-WL12 radiotracers displayed good in vitro stability for 4 h. The affinity and specificity of the four radiotracers for PD-L1 were demonstrated both in vitro and in vivo. The results of biodistribution studies displayed that the pharmacokinetics of the 99mTc-HYNIC-conjugated radiotracers were significantly influenced by the coligands of the radiotracers. Among them, [99mTc]Tc-HYNIC-WL12-tricine/ISONIC exhibited the optimal pharmacokinetic properties (t1/2α = 8.55 min, t1/2β = 54.05 min), including the fastest clearance in nontarget tissues, highest tumor-to-background contrast (e.g., tumor-to-muscle ratio, tumor-to-blood ratio: 40.42 ± 1.59, 14.72 ± 2.77 at 4 h p.i., respectively), and the lowest estimated radiation absorbed dose, highlighting its potential as a clinical SPECT imaging probe for tumor PD-L1 detection.","PeriodicalId":509865,"journal":{"name":"Pharmaceuticals","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of 99mTc-Labeled WL12 Peptides as a Tumor PD-L1-Targeted SPECT Imaging Agent: Kit Formulation, Preclinical Evaluation, and Study on the Influence of Coligands\",\"authors\":\"Mingxuan Fan, J. Yao, Zuoquan Zhao, Xianzhong Zhang, Jie Lu\",\"doi\":\"10.3390/ph17070906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of PD-1/PD-L1 immune checkpoint inhibitor therapy, the ability to monitor PD-L1 expression in the tumor microenvironment is important for guiding therapy. This study was performed to develop a novel radiotracer with optimal pharmacokinetic properties to reflect PD-L1 expression in vivo via single-photon emission computed tomography (SPECT) imaging. [99mTc]Tc-HYNIC-WL12-tricine/M (M = TPPTS, PDA, ISONIC, 4-PSA) complexes with high radiochemical purity (>97%) and suitable molar activity (from 100.5 GBq/μmol to 300 GBq/μmol) were prepared through a kit preparation process. All 99mTc-labeled HYNIC-WL12 radiotracers displayed good in vitro stability for 4 h. The affinity and specificity of the four radiotracers for PD-L1 were demonstrated both in vitro and in vivo. The results of biodistribution studies displayed that the pharmacokinetics of the 99mTc-HYNIC-conjugated radiotracers were significantly influenced by the coligands of the radiotracers. Among them, [99mTc]Tc-HYNIC-WL12-tricine/ISONIC exhibited the optimal pharmacokinetic properties (t1/2α = 8.55 min, t1/2β = 54.05 min), including the fastest clearance in nontarget tissues, highest tumor-to-background contrast (e.g., tumor-to-muscle ratio, tumor-to-blood ratio: 40.42 ± 1.59, 14.72 ± 2.77 at 4 h p.i., respectively), and the lowest estimated radiation absorbed dose, highlighting its potential as a clinical SPECT imaging probe for tumor PD-L1 detection.\",\"PeriodicalId\":509865,\"journal\":{\"name\":\"Pharmaceuticals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceuticals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ph17070906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ph17070906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of 99mTc-Labeled WL12 Peptides as a Tumor PD-L1-Targeted SPECT Imaging Agent: Kit Formulation, Preclinical Evaluation, and Study on the Influence of Coligands
With the development of PD-1/PD-L1 immune checkpoint inhibitor therapy, the ability to monitor PD-L1 expression in the tumor microenvironment is important for guiding therapy. This study was performed to develop a novel radiotracer with optimal pharmacokinetic properties to reflect PD-L1 expression in vivo via single-photon emission computed tomography (SPECT) imaging. [99mTc]Tc-HYNIC-WL12-tricine/M (M = TPPTS, PDA, ISONIC, 4-PSA) complexes with high radiochemical purity (>97%) and suitable molar activity (from 100.5 GBq/μmol to 300 GBq/μmol) were prepared through a kit preparation process. All 99mTc-labeled HYNIC-WL12 radiotracers displayed good in vitro stability for 4 h. The affinity and specificity of the four radiotracers for PD-L1 were demonstrated both in vitro and in vivo. The results of biodistribution studies displayed that the pharmacokinetics of the 99mTc-HYNIC-conjugated radiotracers were significantly influenced by the coligands of the radiotracers. Among them, [99mTc]Tc-HYNIC-WL12-tricine/ISONIC exhibited the optimal pharmacokinetic properties (t1/2α = 8.55 min, t1/2β = 54.05 min), including the fastest clearance in nontarget tissues, highest tumor-to-background contrast (e.g., tumor-to-muscle ratio, tumor-to-blood ratio: 40.42 ± 1.59, 14.72 ± 2.77 at 4 h p.i., respectively), and the lowest estimated radiation absorbed dose, highlighting its potential as a clinical SPECT imaging probe for tumor PD-L1 detection.