Muhammad Tahir, Sufyan Ali, Ayesha Sohail, Ying Zhang, Xiaohua Jin
{"title":"开启在线洞察力:LSTM 探索与迁移学习的前景","authors":"Muhammad Tahir, Sufyan Ali, Ayesha Sohail, Ying Zhang, Xiaohua Jin","doi":"10.1007/s40745-024-00551-2","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning algorithms can improve the time series data analysis as compared to the traditional methods such as moving averages or auto-regressive approaches. This advancement has helped to unlock several challenging problems since machine learning not only helps to forecast the overall trend of the data, but it also helps to keep the historical track of changes in factors, influencing this trend. These predictions play a pivotal role in almost all areas of research where the observations are time dependent, such as problems ranging from challenges of finance to public health, environmental and climate change challenges. A key challenge of these domains is the higher number of attributes and predictors since managing and manipulating data from many attributes is itself a significant challenge for future forecasting. Addressing these challenges is possible with Recursive Long Short-Term Memory models. The application of such models is crucial, and their efficacy is further amplified when considering transfer learning. During this research, a detailed and comprehensive description of such models is addressed. Practical application is illustrated through an example, emphasizing that these models, when transferred to complex and large datasets using transfer learning, hold great promise.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40745-024-00551-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Unlocking Online Insights: LSTM Exploration and Transfer Learning Prospects\",\"authors\":\"Muhammad Tahir, Sufyan Ali, Ayesha Sohail, Ying Zhang, Xiaohua Jin\",\"doi\":\"10.1007/s40745-024-00551-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Machine learning algorithms can improve the time series data analysis as compared to the traditional methods such as moving averages or auto-regressive approaches. This advancement has helped to unlock several challenging problems since machine learning not only helps to forecast the overall trend of the data, but it also helps to keep the historical track of changes in factors, influencing this trend. These predictions play a pivotal role in almost all areas of research where the observations are time dependent, such as problems ranging from challenges of finance to public health, environmental and climate change challenges. A key challenge of these domains is the higher number of attributes and predictors since managing and manipulating data from many attributes is itself a significant challenge for future forecasting. Addressing these challenges is possible with Recursive Long Short-Term Memory models. The application of such models is crucial, and their efficacy is further amplified when considering transfer learning. During this research, a detailed and comprehensive description of such models is addressed. Practical application is illustrated through an example, emphasizing that these models, when transferred to complex and large datasets using transfer learning, hold great promise.</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40745-024-00551-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-024-00551-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-024-00551-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
Unlocking Online Insights: LSTM Exploration and Transfer Learning Prospects
Machine learning algorithms can improve the time series data analysis as compared to the traditional methods such as moving averages or auto-regressive approaches. This advancement has helped to unlock several challenging problems since machine learning not only helps to forecast the overall trend of the data, but it also helps to keep the historical track of changes in factors, influencing this trend. These predictions play a pivotal role in almost all areas of research where the observations are time dependent, such as problems ranging from challenges of finance to public health, environmental and climate change challenges. A key challenge of these domains is the higher number of attributes and predictors since managing and manipulating data from many attributes is itself a significant challenge for future forecasting. Addressing these challenges is possible with Recursive Long Short-Term Memory models. The application of such models is crucial, and their efficacy is further amplified when considering transfer learning. During this research, a detailed and comprehensive description of such models is addressed. Practical application is illustrated through an example, emphasizing that these models, when transferred to complex and large datasets using transfer learning, hold great promise.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.